191 research outputs found

    Predicting freshwater habitat integrity using land-use surrogates

    Get PDF
    Freshwater biodiversity is globally threatened due to human disturbances, but freshwater ecosystems have been accorded lessprotection than their terrestrial and marine counterparts. Few criteria exist for assessing the habitat integrity of rivers and data used for such assessments are generally of limited geographical coverage. Here, we use a fine-scale dataset describing river integrity in north-western South Africa to explore the extent to which measures of freshwater habitat integrity can be predicted from remotely sensed data, which are readily available in many parts of the world. A spatial statistical model was built using broad land-cover variables to predict the habitat integrity (subdivided into riparian and instream integrity) of rivers.We also explored the importance of the spatial scale. Results showed that riparian and, to a lesser degree, instream habitat integrity of river systems could be predicted with reasonable accuracy. The total area under natural vegetation was the most significant predictor of riparian integrity, which is best predicted by land-use activities at catchment level, rather than more locally. Our GIS-based model thus provides a fine-scale approach to assessing river habitat integrity as a supplement to landscape-level conservation plans for river systems, and represents a significant contribution towards the monitoring componentof the River Health Programme (RHP), which reports on the state of rivers in South Africa

    Anaplastic thyroid carcinoma: three protocols combining doxorubicin, hyperfractionated radiotherapy and surgery

    Get PDF
    Patients with anaplastic thyroid carcinoma can rarely be cured, but every effort should be made to prevent death due to suffocation. Between 1984 and 1999, 55 consecutive patients with anaplastic thyroid carcinoma were prospectively treated according to a combined regimen consisting of hyperfractionated radiotherapy, doxorubicin, and when feasible surgery. Radiotherapy was carried out for 5 days a week. The daily fraction until 1988 was 1.0 Gy×2 (A) and 1989–92 1.3 Gy×2 (B) . Thereafter 1.6 Gy×2 (C) was administered. Radiotherapy was administered to a total target dose of 46 Gy; of which 30 Gy was administered preoperatively in the first two protocols (A and B), while the whole dose was given preoperatively in the third protocol (C). The therapy was otherwise identical. Twenty mg doxorubicin was administered intravenously weekly. Surgery was possible in 40 patients. No patient failed to complete the protocol due to toxicity. In only 13 cases (24%) was death attributed to local failure. Five patients (9%) ‘had a survival’ exceeding 2 years. No signs of local recurrence were seen in 33 patients (60%); 5 out of 16 patients in Protocol A, 11 out of 17 patients in Protocol B, 17 out of 22 patients in Protocol C (P=0.017). In the 40 patients undergoing additional surgery, no signs of local recurrence were seen in 5 out of 9 patients, 11 out of 14 patients and 17 out of 17 patients, respectively (P=0.005)

    The feasibility of canine rabies elimination in Africa: dispelling doubts with data

    Get PDF
    <p><b>Background:</b> Canine rabies causes many thousands of human deaths every year in Africa, and continues to increase throughout much of the continent.</p> <p><b>Methodology/Principal Findings:</b> This paper identifies four common reasons given for the lack of effective canine rabies control in Africa: (a) a low priority given for disease control as a result of lack of awareness of the rabies burden; (b) epidemiological constraints such as uncertainties about the required levels of vaccination coverage and the possibility of sustained cycles of infection in wildlife; (c) operational constraints including accessibility of dogs for vaccination and insufficient knowledge of dog population sizes for planning of vaccination campaigns; and (d) limited resources for implementation of rabies surveillance and control. We address each of these issues in turn, presenting data from field studies and modelling approaches used in Tanzania, including burden of disease evaluations, detailed epidemiological studies, operational data from vaccination campaigns in different demographic and ecological settings, and economic analyses of the cost-effectiveness of dog vaccination for human rabies prevention.</p> <p><b>Conclusions/Significance:</b> We conclude that there are no insurmountable problems to canine rabies control in most of Africa; that elimination of canine rabies is epidemiologically and practically feasible through mass vaccination of domestic dogs; and that domestic dog vaccination provides a cost-effective approach to the prevention and elimination of human rabies deaths.</p&gt

    Evolutionary History of Rabies in Ghana

    Get PDF
    Rabies virus (RABV) is enzootic throughout Africa, with the domestic dog (Canis familiaris) being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages have been detected in West Africa. Lineage 2 is present throughout West Africa, whereas Africa 1a dominates in northern and eastern Africa, but has been detected in Nigeria and Gabon, and Africa 1b was previously absent from West Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected over an eighteen-month period (2007–2009). Phylogenetic analysis of the sequences obtained confirmed all viruses to be RABV, belonging to lineages previously detected in sub-Saharan Africa. However, unlike earlier reported studies that suggested a single lineage (Africa 2) circulates in West Africa, we identified viruses belonging to the Africa 2 lineage and both Africa 1 (a and b) sub-lineages. Phylogeographic Bayesian Markov chain Monte Carlo analysis of a 405 bp fragment of the RABV nucleoprotein gene from the 76 new sequences derived from Ghanaian animals suggest that within the Africa 2 lineage three clades co-circulate with their origins in other West African countries. Africa 1a is probably a western extension of a clade circulating in central Africa and the Africa 1b virus a probable recent introduction from eastern Africa. We also developed and tested a novel reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of RABV in African laboratories. This RT-LAMP was shown to detect both Africa 1 and 2 viruses, including its adaptation to a lateral flow device format for product visualization. These data suggest that RABV epidemiology is more complex than previously thought in West Africa and that there have been repeated introductions of RABV into Ghana. This analysis highlights the potential problems of individual developing nations implementing rabies control programmes in the absence of a regional programme

    Definition of Mafa-A and -B haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis)

    Get PDF
    The major histocompatibility complex (MHC) class I B gene/allelic repertoire was investigated in a pedigreed population of cynomolgus macaques of mixed Indonesian/Malaysian origin. The Mafa-B alleles detected in this cohort are mostly specific for a given geographic area, and only a small number of alleles appears to be shared with other populations. This suggests the fast evolution of Mafa-B alleles due to adaptation to new environments. In contrast to humans, the B locus in Old World monkeys displays extensive copy number variation. The Mafa-B and previously defined -A gene combinations segregate in families and thus allowed the definition of extended haplotypes. In many cases it was possible to assign a particular Mafa-I allele to one of these Mafa-A/B haplotypes as well. The presence of a large number of stable haplotypes in this cohort of animals, which was pedigreed for up to eight generations, looks promising for developing discriminative MHC typing tools that are less cumbersome. Furthermore, the discovery of 53 unreported Mafa-B sequences expands the lexicon of alleles significantly, and may help in understanding the complex organisation of the macaque B region

    Global Conservation Priorities for Marine Turtles

    Get PDF
    Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a “conservation priorities portfolio” system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa

    Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?

    Get PDF
    Gold nanoparticles have attracted enormous scientific and technological interest due to their ease of synthesis, chemical stability, and unique optical properties. Proof-of-concept studies demonstrate their biomedical applications in chemical sensing, biological imaging, drug delivery, and cancer treatment. Knowledge about their potential toxicity and health impact is essential before these nanomaterials can be used in real clinical settings. Furthermore, the underlying interactions of these nanomaterials with physiological fluids is a key feature of understanding their biological impact, and these interactions can perhaps be exploited to mitigate unwanted toxic effects. In this Perspective we discuss recent results that address the toxicity of gold nanoparticles both in vitro and in vivo, and we provide some experimental recommendations for future research at the interface of nanotechnology and biological systems

    Concentration-Dependent, Size-Independent Toxicity of Citrate Capped AuNPs in Drosophila melanogaster

    Get PDF
    The expected potential benefits promised by nanotechnology in various fields have led to a rapid increase of the presence of engineered nanomaterials in a high number of commercial goods. This is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of the physical/chemical factors responsible for their toxic effects. In this work, we evaluated the toxicity of monodisperse citrate-capped gold nanoparticles (AuNPs) of different sizes (5, 15, 40, and 80 nm) in the model organism Drosophila melanogaster, upon ingestion. To properly evaluate and distinguish the possible dose- and/or size-dependent toxicity of the AuNPs, we performed a thorough assessment of their biological effects, using two different dose-metrics. In the first approach, we kept constant the total surface area of the differently sized AuNPs (Total Exposed Surface area approach, TES), while, in the second approach, we used the same number concentration of the four different sizes of AuNPs (Total Number of Nanoparticles approach, TNN). We observed a significant AuNPs-induced toxicity in vivo, namely a strong reduction of Drosophila lifespan and fertility performance, presence of DNA fragmentation, as well as a significant modification in the expression levels of genes involved in stress responses, DNA damage recognition and apoptosis pathway. Interestingly, we found that, within the investigated experimental conditions, the toxic effects in the exposed organisms were directly related to the concentration of the AuNPs administered, irrespective of their size
    corecore