14 research outputs found

    Time domain algorithm for accelerated determination of the first order moment of photo current fluctuations in high speed laser Doppler perfusion imaging

    Get PDF
    Advances in optical array sensor technology allow for the real time acquisition of dynamic laser speckle patterns generated by tissue perfusion, which, in principle, allows for real time laser Doppler perfusion imaging (LDPI). Exploitation of these developments is enhanced with the introduction of faster algorithms to transform photo currents into perfusion estimates using the first moment of the power spectrum. A time domain (TD) algorithm is presented for determining the first-order spectral moment. Experiments are performed to compare this algorithm with the widely used Fast Fourier Transform (FFT). This study shows that the TD-algorithm is twice as fast as the FFT-algorithm without loss of accuracy. Compared to FFT, the TD-algorithm is efficient in terms of processor time, memory usage and data transport

    Agarose Spot as a Comparative Method for in situ Analysis of Simultaneous Chemotactic Responses to Multiple Chemokines

    Get PDF
    yesWe describe a novel protocol to quantitatively and simultaneously compare the chemotactic responses of cells towards different chemokines. In this protocol, droplets of agarose gel containing different chemokines are applied onto the surface of a Petri dish, and then immersed under culture medium in which cells are suspended. As chemokine molecules diffuse away from the spot, a transient chemoattractant gradient is established across the spots. Cells expressing the corresponding cognate chemokine receptors migrate against this gradient by crawling under the agarose spots towards their centre. We show that this migration is chemokine-specific; meaning that only cells that express the cognate chemokine cell surface receptor, migrate under the spot containing its corresponding chemokine ligand. Furthermore, we show that migration under the agarose spot can be modulated by selective small molecule antagonists present in the cell culture medium

    Liver Cancer in Tyrosinemia Type 1

    Get PDF
    Hereditary Tyrosinemia type I (HT1) is clinically mainly characterised by severe liver disease. Most patients present in their first months of life with liver failure, but others can present later with issues of compensated cirrhosis, renal tubulopathy or acute intermittent porphyria. If patients survive the acute phase with liver failure or if they present later with compensated cirrhosis, they often develop hepatocellular carcinoma early but also later in life. The course of the disease changed after the introduction of 2-(2 nitro-4-3 trifluoro-methylbenzoyl)-1,3-cyclohexanedione (NTBC), which blocks the tyrosine degradation pathway at an earlier step. Therefore, the toxic products did not accumulate anymore and all clinical problems resolved. However, the risk (although clearly decreased) for developing liver cancer remained, especially if NTBC treatment is initiated late, a slow decrease of the tumor marker alpha-fetoprotein is seen or if the alpha-fetoprotein concentrations remain just above the normal range. A rise of alpha-fetoprotein in these HT1 patients is more or less pathognomonic for liver cancer. Although hepatoblastoma development occurs in HT1 patients, most HT1 patients develop hepatocellular carcinoma (HCC) or a mixed type of carcinoma consisting of HCC and hepatoblastoma. Due to the small risk of liver cancer development, screening for liver cancer (especially HCC) is still recommended in HT1 patients using regular measures of alpha-fetoprotein and imaging. Ultrasound is mostly the modality of choice for surveillance, because it is widely available, it does not use radiation and is noninvasive. When a suspicious lesion is present, the higher sensitivity of MRI could be used for characterization and staging of lesions. At this moment, no HCC development in pre-symptomatically treated patients is reported. These different situations could possibly indicate that NTBC can prevent the start of the development of HCC when initiated early, but can't stop the development of HCC if it is prescribed at a later stage, stressing the importance of early diagnosis.</p

    Expression of Blimp-1 in Dendritic Cells Modulates the Innate Inflammatory Response in Dextran Sodium Sulfate-Induced Colitis

    Get PDF
    A single nucleotide polymorphism of PRDM1, the gene encoding Blimp-1, is strongly associated with inflammatory bowel disease. Here, we demonstrate that Blimp-1 in CD103(+) dendritic cells (DCs) critically contributes to the regulation of macrophage homeostasis in the colon. Dextran sodium sulfate (DSS)-exposed Blimp-1(cko) mice with a deletion of Blimp-1 in CD103(+) DCs and CD11c(hi) macrophages exhibited severe inflammatory symptoms, pronounced weight loss, high mortality, robust infiltration of neutrophils in epithelial regions of the colon, an increased expression of proinflammatory cytokines and a significant decrease in CD103(+) DCs in the colon compared with DSS exposed wild-type (WT) mice. Purified colonic macrophages from Blimp-1(cko) mice expressed increased levels of matrix metalloproteinase 8, 9 and 12 mRNA. WT macrophages cocultured with colonic DCs but not bone marrow-derived DCs from Blimp-1(cko) produced increased matrix metalloproteinases in an interleukin (IL)-1beta- and IL-6-dependent manner. Treatment of Blimp-1(cko) mice with anti-IL-1beta and anti-IL-6 abrogated the exaggerated clinical response. Overall, these data demonstrate that Blimp-1 expression in DCs can alter an innate inflammatory response by modulating the activation of myeloid cells. This is a novel mechanism of contribution of Blimp-1 for the pathogenesis of inflammatory bowel diseases, implicating another therapeutic target for the development of inflammatory bowel disease

    The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases

    No full text
    n/

    Inflammation and colorectal cancer

    No full text
    Chronic intestinal Inflammation occurs in response to environmental factors, infection and genetics; and plays a critical role in initiation, promotion, progression and metastasis of colon cancer. Colitis associated colon cancer (CAC) is a classic example of multifactorial, multi-step colorectal cancer associated with inflammatory bowel diseases. In recent years, the generation of animal models of CAC and recognition of the importance of the gut microbiota, altered immune system, and other environmental factors in CAC, has expanded the basic understanding of inflammation associated colon cancer. In this chapter, we discuss the cellular alterations and mechanisms by which inflammation contributes towards the development of colon cancer using CAC as a model system. We have also explored some of the promising strategies for preventing progression of inflammation to colon cancer. The emerging role of dietary factors, obesity and gut microbiota in colon cancer is also reviewed
    corecore