22 research outputs found

    Aseptic lysis L2-L3 as complication of abdominal aortic aneurysm repair

    Get PDF
    Osteolytic vertebral erosion is usually related to tumours, spondylitis or spondylodiscitis. Few reports in the literature describe lytic lesions of anterior lumbar vertebral bodies resulting from abdominal aortic aneurysm or false aneurysm. We report a case of abdominal aortic false aneurysm that caused lytic lesions of the second and third vertebral bodies in an 80-year-old man who underwent endovascular aneurysm repair. Fluoroscopy guided biopsy excluded infection or tumour. We performed a posterior spinal fusion and decompression because of bone loss of the second and third lumbar vertebral bodies and central stenosis. Postoperatively the patient showed satisfactory relief in low-back and thigh pain but, unfortunately, he died 1 month after surgery because of respiratory complications. This case suggests that when a lytic lesion of a lumbar vertebral body is discovered in a patient who has undergone endovascular aneurysm repair, an abdominal aortic false aneurysm may be the cause of the vertebral erosion even in cases without infective pathogenesis

    Metabolic engineering of lactic acid bacteria for the production of nutraceuticals

    Get PDF
    Lactic acid bacteria display a relatively simple and well-described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies on the level of sugar metabolism, that lead to either the efficient re-routing of the lactococcal sugar metabolism to nutritional end-products other than lactic acid such as L-alanine, several low-calorie sugars and oligosaccharides or to enhancement of sugar metabolism for complete removal of (undesirable) sugars from food materials. Moreover, we will review current metabolic engineering approaches that aim at increasing the flux through complex biosynthetic pathways, leading to the production of the B-vitamins folate and riboflavin. An overview of these metabolic engineering activities can be found on the website of the Nutra Cells 5th Framework EU-project (www.nutracells.com). Finally, the impact of the developments in the area of genomics and corresponding high-throughput technologies on nutraceutical production will be discusse
    corecore