81 research outputs found

    Peroxisomal Alanine: Glyoxylate Aminotransferase AGT1 Is Indispensable for Appressorium Function of the Rice Blast Pathogen, Magnaporthe oryzae

    Get PDF
    The role of β-oxidation and the glyoxylate cycle in fungal pathogenesis is well documented. However, an ambiguity still remains over their interaction in peroxisomes to facilitate fungal pathogenicity and virulence. In this report, we characterize a gene encoding an alanine, glyoxylate aminotransferase 1 (AGT1) in Magnaporthe oryzae, the causative agent of rice blast disease, and demonstrate that AGT1 is required for pathogenicity of M. oryzae. Targeted deletion of AGT1 resulted in the failure of penetration via appressoria; therefore, mutants lacking the gene were unable to induce blast symptoms on the hosts rice and barley. This penetration failure may be associated with a disruption in lipid mobilization during conidial germination as turgor generation in the appressorium requires mobilization of lipid reserves from the conidium. Analysis of enhanced green fluorescent protein expression using the transcriptional and translational fusion with the AGT1 promoter and open reading frame, respectively, revealed that AGT1 expressed constitutively in all in vitro grown cell types and during in planta colonization, and localized in peroxisomes. Peroxisomal localization was further confirmed by colocalization with red fluorescent protein fused with the peroxisomal targeting signal 1. Surprisingly, conidia produced by the Δagt1 mutant were unable to form appressoria on artificial inductive surfaces, even after prolonged incubation. When supplemented with nicotinamide adenine dinucleotide (NAD+)+pyruvate, appressorium formation was restored on an artificial inductive surface. Taken together, our data indicate that AGT1-dependent pyruvate formation by transferring an amino group of alanine to glyoxylate, an intermediate of the glyoxylate cycle is required for lipid mobilization and utilization. This pyruvate can be converted to non-fermentable carbon sources, which may require reoxidation of NADH generated by the β-oxidation of fatty acids to NAD+ in peroxisomes. Therefore, it may provide a means to maintain redox homeostasis in appressoria

    Comparative analysis of an experimental subcellular protein localization assay and in silico prediction methods

    Get PDF
    The subcellular localization of a protein can provide important information about its function within the cell. As eukaryotic cells and particularly mammalian cells are characterized by a high degree of compartmentalization, most protein activities can be assigned to particular cellular compartments. The categorization of proteins by their subcellular localization is therefore one of the essential goals of the functional annotation of the human genome. We previously performed a subcellular localization screen of 52 proteins encoded on human chromosome 21. In the current study, we compared the experimental localization data to the in silico results generated by nine leading software packages with different prediction resolutions. The comparison revealed striking differences between the programs in the accuracy of their subcellular protein localization predictions. Our results strongly suggest that the recently developed predictors utilizing multiple prediction methods tend to provide significantly better performance over purely sequence-based or homology-based predictions

    Nephrolithiasis related to inborn metabolic diseases

    Get PDF
    Nephrolithiasis associated with inborn metabolic diseases is a very rare condition with some common characteristics: early onset of symptoms, family history, associated tubular impairment, bilateral, multiple and recurrent stones, and association with nephrocalcinosis. The prognosis of such diseases may lead to life threatening conditions, not only because of unabated kidney damage but also because of progressive extra-renal involvement, either in a systemic form (e.g. primary hyperoxaluria type 1, requiring combined liver and kidney transplantation), or in a neurological form (Lesch–Nyhan syndrome leading to auto-mutilation and disability, phosphoribosyl pyrophosphate synthetase superactivity, which is associated with mental retardation). Patients with other inborn metabolic diseases present only with recurrent stone formation, such as cystinuria, adenine phosphoribosyl-transferase deficiency, xanthine deficiency. Finally, nephrolithiasis may be secondarily part of some other metabolic diseases, such as glycogen storage disease type 1 or inborn errors of metabolism leading to Fanconi syndrome (nephropathic cystinosis, tyrosinaemia type 1, fructose intolerance, Wilson disease, respiratory chain disorders, etc.). The diagnosis is based on highly specific investigations, including crystal identification, biochemical analyses and DNA study. The treatment of nephrolithiasis requires hydration as well as specific measures. Compliance is a major issue regarding the progression of renal damage, but the overall outcome mainly depends on extra-renal involvement in relation to the metabolic defect

    Alternative splicing and differential subcellular localization of the rat FGF antisense gene product

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GFG/NUDT is a nudix hydrolase originally identified as the product of the fibroblast growth factor-2 antisense (FGF-AS) gene. While the FGF-AS RNA has been implicated as an antisense regulator of FGF-2 expression, the expression and function of the encoded GFG protein is largely unknown. Alternative splicing of the primary FGF-AS mRNA transcript predicts multiple GFG isoforms in many species including rat. In the present study we focused on elucidating the expression and subcellular distribution of alternatively spliced rat GFG isoforms.</p> <p>Results</p> <p>RT-PCR and immunohistochemistry revealed tissue-specific GFG mRNA isoform expression and subcellular distribution of GFG immunoreactivity in cytoplasm and nuclei of a wide range of normal rat tissues. FGF-2 and GFG immunoreactivity were co-localized in some, but not all, tissues examined. Computational analysis identified a mitochondrial targeting sequence (MTS) in the N-terminus of three previously described rGFG isoforms. Confocal laser scanning microscopy and subcellular fractionation analysis revealed that all rGFG isoforms bearing the MTS were specifically targeted to mitochondria whereas isoforms and deletion mutants lacking the MTS were localized in the cytoplasm and nucleus. Mutation and deletion analysis confirmed that the predicted MTS was necessary and sufficient for mitochondrial compartmentalization.</p> <p>Conclusion</p> <p>Previous findings strongly support a role for the FGF antisense RNA as a regulator of FGF2 expression. The present study demonstrates that the antisense RNA itself is translated, and that protein isoforms resulting form alternative RNA splicing are sorted to different subcellular compartments. FGF-2 and its antisense protein are co-expressed in many tissues and in some cases in the same cells. The strong conservation of sequence and genomic organization across animal species suggests important functional significance to the physical association of these transcript pairs.</p

    Targeting murine heart and brain: visualisation conditions for multi-pinhole SPECT with 99mTc- and 123I-labelled probes

    Get PDF
    The study serves to optimise conditions for multi-pinhole SPECT small animal imaging of (123)I- and (99m)Tc-labelled radiopharmaceuticals with different distributions in murine heart and brain and to investigate detection and dose range thresholds for verification of differences in tracer uptake.A Triad 88/Trionix system with three 6-pinhole collimators was used for investigation of dose requirements for imaging of the dopamine D(2) receptor ligand [(123)I]IBZM and the cerebral perfusion tracer [(99m)Tc]HMPAO (1.2-0.4 MBq/g body weight) in healthy mice. The fatty acid [(123)I]IPPA (0.94 +/- 0.05 MBq/g body weight) and the perfusion tracer [(99m)Tc]sestamibi (3.8 +/- 0.45 MBq/g body weight) were applied to cardiomyopathic mice overexpressing the prostaglandin EP(3) receptor.In vivo imaging and in vitro data revealed 45 kBq total cerebral uptake and 201 kBq cardiac uptake as thresholds for visualisation of striatal [(123)I]IBZM and of cardiac [(99m)Tc]sestamibi using 100 and 150 s acquisition time, respectively. Alterations of maximal cerebral uptake of [(123)I]IBZM by >20% (116 kBq) were verified with the prerequisite of 50% striatal of total uptake. The labelling with [(99m)Tc]sestamibi revealed a 30% lower uptake in cardiomyopathic hearts compared to wild types. [(123)I]IPPA uptake could be visualised at activity doses of 0.8 MBq/g body weight.Multi-pinhole SPECT enables detection of alterations of the cerebral uptake of (123)I- and (99m)Tc-labelled tracers in an appropriate dose range in murine models targeting physiological processes in brain and heart. The thresholds of detection for differences in the tracer uptake determined under the conditions of our experiments well reflect distinctions in molar activity and uptake characteristics of the tracers
    corecore