109 research outputs found

    MEG resting state functional connectivity in Parkinson's disease related dementia

    Get PDF
    Parkinson's disease (PD) related dementia (PDD) develops in up to 60% of patients, but the pathophysiology is far from being elucidated. Abnormalities of resting state functional connectivity have been reported in Alzheimer's disease (AD). The present study was performed to determine whether PDD is likewise characterized by changes in resting state functional connectivity. MEG recordings were obtained in 13 demented and 13 non-demented PD patients. The synchronization likelihood (SL) was calculated within and between cortical areas in six frequency bands. Compared to non-demented PD, PDD was characterized by lower fronto-temporal SL in the alpha range, lower intertemporal SL in delta, theta and alpha1 bands as well as decreased centro-parietal gamma band synchronization. In addition, higher parieto-occipital synchronization in the alpha2 and beta bands was found in PDD. The observed changes in functional connectivity are reminiscent of changes in AD, and may reflect reduced cholinergic activity and/or loss of cortico-cortical anatomical connections in PDD. Β© 2008 The Author(s)

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    Gene Expression Changes in GABAA Receptors and Cognition Following Chronic Ketamine Administration in Mice

    Get PDF
    Ketamine is a well-known anesthetic agent and a drug of abuse. Despite its widespread use and abuse, little is known about its long-term effects on the central nervous system. The present study was designed to evaluate the effect of long-term (1- and 3-month) ketamine administration on learning and memory and associated gene expression levels in the brain. The Morris water maze was used to assess spatial memory and gene expression changes were assayed using Affymetrix Genechips; a focus on the expression of GABAA receptors that mediate a tonic inhibition in the brain, was confirmed by quantitative real-time PCR and western blot. Compared with saline controls, there was a decline in learning and memory performance in the ketamine-treated mice. Genechip results showed that 110 genes were up-regulated and 136 genes were down-regulated. An ontology analysis revealed the most significant effects of ketamine were on GABAA receptors. In particular, there was a significant up-regulation of both mRNA and protein levels of the alpha 5 subunit (Gabra5) of the GABAA receptors in the prefrontal cortex. In conclusion, chronic exposure to ketamine impairs working memory in mice, which may be explained at least partly by up-regulation of Gabra5 subunits in the prefrontal cortex

    Immature Cryopreserved Ovary Restores Puberty and Fertility in Mice without Alteration of Epigenetic Marks

    Get PDF
    BACKGROUND: Progress in oncology could improve survival rate in children, but would probably lead to impaired fertility and puberty. In pre-pubertal girls, the only therapeutic option is the cryopreservation of one ovary. Three births have been reported after reimplantation of cryopreserved mature ovary. Conversely, reimplantation of ovary preserved before puberty (defined as immature ovary) has never been performed in humans. METHODOLOGY/PRINCIPAL FINDINGS: In order to analyze ovarian function, we performed transplantation using fresh or cryopreserved immature grafts in pre-pubertal or adult mice. Puberty as well as cyclic hormonal activity was restored. All follicle populations were present although a significant reduction in follicle density was observed with or without cryopreservation. Although fertility was restored, the graft is of limited life span. Because ex vivo ovary manipulation and cryopreservation procedure, the status of genomic imprinting was investigated. Methylation status of the H19 and Lit1 Imprinting Control Regions in kidney, muscle and tongue of offsprings from grafted mice does not show significant alteration when compared to those of unoperated mice. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that immature ovarian grafting can restore spontaneous puberty and fertility. However, these data suggest that follicle depletion leads to premature ovarian failure. This study addresses the very important epigenetics issue, and provides valuable information to the study of ovarian transplantation suggesting that these procedures do not perturb normal epigenetics marks. These results are highly relevant to the reimplantation question of immature cortex in women

    Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia

    Get PDF
    Pharmacological, genetic and expression studies implicate N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia (SCZ). Similarly, several lines of evidence suggest that autism spectrum disorders (ASD) could be due to an imbalance between excitatory and inhibitory neurotransmission. As part of a project aimed at exploring rare and/or de novo mutations in neurodevelopmental disorders, we have sequenced the seven genes encoding for NMDA receptor subunits (NMDARs) in a large cohort of individuals affected with SCZ or ASD (n=429 and 428, respectively), parents of these subjects and controls (n=568). Here, we identified two de novo mutations in patients with sporadic SCZ in GRIN2A and one de novo mutation in GRIN2B in a patient with ASD. Truncating mutations in GRIN2C, GRIN3A and GRIN3B were identified in both subjects and controls, but no truncating mutations were found in the GRIN1, GRIN2A, GRIN2B and GRIN2D genes, both in patients and controls, suggesting that these subunits are critical for neurodevelopment. The present results support the hypothesis that rare de novo mutations in GRIN2A or GRIN2B can be associated with cases of sporadic SCZ or ASD, just as it has recently been described for the related neurodevelopmental disease intellectual disability. The influence of genetic variants appears different, depending on NMDAR subunits. Functional compensation could occur to counteract the loss of one allele in GRIN2C and GRIN3 family genes, whereas GRIN1, GRIN2A, GRIN2B and GRIN2D appear instrumental to normal brain development and function

    Functional Refinement in the Projection from Ventral Cochlear Nucleus to Lateral Superior Olive Precedes Hearing Onset in Rat

    Get PDF
    Principal neurons of the lateral superior olive (LSO) compute the interaural intensity differences necessary for localizing high-frequency sounds. To perform this computation, the LSO requires precisely tuned, converging excitatory and inhibitory inputs that are driven by the two ears and that are matched for stimulus frequency. In rodents, the inhibitory inputs, which arise from the medial nucleus of the trapezoid body (MNTB), undergo extensive functional refinement during the first postnatal week. Similar functional refinement of the ascending excitatory pathway, which arises in the anteroventral cochlear nucleus (AVCN), has been assumed but has not been well studied. Using whole-cell voltage clamp in acute brainstem slices of neonatal rats, we examined developmental changes in input strength and pre- and post-synaptic properties of the VCN-LSO pathway. A key question was whether functional refinement in one of the two major input pathways might precede and then guide refinement in the opposite pathway. We find that elimination and strengthening of VCN inputs to the LSO occurs over a similar period to that seen for the ascending inhibitory (MNTB-LSO) pathway. During this period, the fractional contribution provided by NMDA receptors (NMDARs) declines while the contribution from AMPA receptors (AMPARs) increases. In the NMDAR-mediated response, GluN2B-containing NMDARs predominate in the first postnatal week and decline sharply thereafter. Finally, the progressive decrease in paired-pulse depression between birth and hearing onset allows these synapses to follow progressively higher frequencies. Our data are consistent with a model in which the excitatory and inhibitory projections to LSO are functionally refined in parallel during the first postnatal week, and they further suggest that GluN2B-containing NMDARs may mediate early refinement in the VCN-LSO pathway

    Association Study of the Ξ²2-Adrenergic Receptor Gene Polymorphisms and Hypertension in the Northern Han Chinese

    Get PDF
    Background: The beta 2-adrenergic receptor (ADRB2) gene has been widely researched as a candidate gene for essential hypertension (EH), but no consensus has been reached in different ethnicities. The aim of the present study was to evaluate the possible association between the ADRB2 gene polymorphisms and the EH risk in the Northern Han Chinese population. Methodology/Principal Findings: This study included 747 hypertensive subjects and 390 healthy volunteers as control subjects in the Northern Han Chinese. Genotyping was performed to identify the C-47T, A46G and C79G polymorphisms of the ADRB2 gene. G allelic frequency of A46G polymorphism was significantly higher in hypertensive subjects (P = 0.011, OR = 1.287, 95% CI [1.059-1.565]) than that in controls. Significant association could also be found in dominant genetic model (GG+AG vs. AA, P = 0.006, OR = 1.497, 95% CI [1.121-1.998]), in homozygote comparison (GG vs. AA, P = 0.025, OR = 1.568, 95% CI [1.059-2.322]), and in additive genetic model (GG vs. AG vs. AA, P = 0.012, OR = 1.282, 95% CI [1.056-1.555]). Subgroup analyses performed by gender suggested that this association could be found in male, but not in female. Stratification analyses by obesity showed that A46G polymorphism was related to the prevalence of hypertension in the obese population (GG vs. AG vs. AA, P<0.001, OR = 1.645, 95% CI [1.258-2.151]). Significant interaction was found between A46G genotypes and body mass index on EH risk. No significant association could be found between C-47T or C79G polymorphism and EH risk. Linkage disequilibrium was detected between the C-47T, A46G and C79G polymorphisms. Haplotype analyses observed that the T-47-A46-C79 haplotype was a protective haplotype for EH, while the T-47-G46-C79 haplotype increased the risk. Conclusions/Significances: We revealed that the ADRB2 A46G polymorphism might increase the risk for EH in the Northern Han Chinese population.Multidisciplinary SciencesSCI(E)7ARTICLE4null

    The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation

    Get PDF
    N-Methyl-d-aspartic acid (NMDA) receptors are widely expressed in the brain and are critical for many forms of synaptic plasticity. Subtypes of the NMDA receptor NR2 subunit are differentially expressed during development; in the forebrain, the NR2B receptor is dominant early in development, and later both NR2A and NR2B are expressed. In heterologous expression systems, NR2A-containing receptors open more reliably and show much faster opening and closing kinetics than do NR2B-containing receptors. However, conflicting data, showing similar open probabilities, exist for receptors expressed in neurons. Similarly, studies of synaptic plasticity have produced divergent results, with some showing that only NR2A-containing receptors can drive long-term potentiation and others showing that either subtype is capable of driving potentiation. In order to address these conflicting results as well as open questions about the number and location of functional receptors in the synapse, we constructed a Monte Carlo model of glutamate release, diffusion, and binding to NMDA receptors and of receptor opening and closing as well as a model of the activation of calcium-calmodulin kinase II, an enzyme critical for induction of synaptic plasticity, by NMDA receptor-mediated calcium influx. Our results suggest that the conflicting data concerning receptor open probabilities can be resolved, with NR2A- and NR2B-containing receptors having very different opening probabilities. They also support the conclusion that receptors containing either subtype can drive long-term potentiation. We also are able to estimate the number of functional receptors at a synapse from experimental data. Finally, in our models, the opening of NR2B-containing receptors is highly dependent on the location of the receptor relative to the site of glutamate release whereas the opening of NR2A-containing receptors is not. These results help to clarify the previous findings and suggest future experiments to address open questions concerning NMDA receptor function
    • …
    corecore