78 research outputs found

    Warmblood fragile foal syndrome type 1 mutation (PLOD1 c.2032G>A) is not associated with catastrophic breakdown and has a low allele frequency in the Thoroughbred breed.

    Get PDF
    BackgroundCatastrophic fractures are among the most common cause of fatalities in racehorses. Several factors, including genetics, likely contribute to increased risk for fatal injuries. A variant in the procollagen-lysine, 2-oxoglutarate 5-dioxygenase1 gene (PLOD1 c.2032G>A) was shown to cause Warmblood fragile foal syndrome type 1 (WFFS), a fatal recessive defect of the connective tissue. Screening of multiple horse breeds identified the presence of the WFFS allele in the Thoroughbred. PLOD1 is involved in cross-linking of collagen fibrils and thus could potentially increase the risk of catastrophic breakdown.ObjectivesEstimate the frequency of the WFFS allele (PLOD1 c.2032G>A) and determine if it is a risk factor for catastrophic breakdown in the Thoroughbred.Study designCase-control genetic study.MethodsGenomic DNA from hair and/or tissue samples was genotyped for the WFFS allele. Fisher's Exact tests were performed to compare allele and carrier frequencies between the case cohort (catastrophic breakdown, n = 22) and several cohorts with no record of injury (n = 138 raced/trained at same track and season and n = 185 older than 7 years and raced during same season), nonracers (n = 92), and a random sample without consideration for racing history (n = 279).ResultsThe frequency of the PLOD1 c.2032G>A variant in the Thoroughbred breed is low (1.2%). Seventeen of 716 Thoroughbreds tested were carriers (2.4%) and no WFFS homozygotes were detected. Only one catastrophic breakdown case carried the WFFS allele. No statistically significant difference in allele or carrier frequency was identified between case and control cohorts (P>0.05 in all comparisons performed).Main limitationsThis study evaluated cases from one single track.ConclusionsThis study demonstrated that the PLOD1 c.2032G>A associated with WFFS is present at very low frequency in Thoroughbreds and is not a genetic risk factor for catastrophic breakdown

    Tissue resolved, gene structure refined equine transcriptome.

    Get PDF
    BackgroundTranscriptome interpretation relies on a good-quality reference transcriptome for accurate quantification of gene expression as well as functional analysis of genetic variants. The current annotation of the horse genome lacks the specificity and sensitivity necessary to assess gene expression especially at the isoform level, and suffers from insufficient annotation of untranslated regions (UTR) usage. We built an annotation pipeline for horse and used it to integrate 1.9 billion reads from multiple RNA-seq data sets into a new refined transcriptome.ResultsThis equine transcriptome integrates eight different tissues from 59 individuals and improves gene structure and isoform resolution, while providing considerable tissue-specific information. We utilized four levels of transcript filtration in our pipeline, aimed at producing several transcriptome versions that are suitable for different downstream analyses. Our most refined transcriptome includes 36,876 genes and 76,125 isoforms, with 6474 candidate transcriptional loci novel to the equine transcriptome.ConclusionsWe have employed a variety of descriptive statistics and figures that demonstrate the quality and content of the transcriptome. The equine transcriptomes that are provided by this pipeline show the best tissue-specific resolution of any equine transcriptome to date and are flexible for several downstream analyses. We encourage the integration of further equine transcriptomes with our annotation pipeline to continue and improve the equine transcriptome

    Hereditary sensory neuropathy type I

    Get PDF
    Hereditary sensory neuropathy type I (HSN I) is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances) are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7) identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN), especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra neuropathy, or decaying skin tumours like amelanotic melanoma. Management of HSN I follows the guidelines given for diabetic foot care (removal of pressure to the ulcer and eradication of infection, followed by the use of specific protective footwear) and starts with early and accurate counselling of patients about risk factors for developing foot ulcerations. The disorder is slowly progressive and does not influence life expectancy but is often severely disabling after a long duration of the disease

    Multilineage hematopoietic recovery with concomitant antitumor effects using low dose Interleukin-12 in myelosuppressed tumor-bearing mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin-12 (IL-12) is a cytokine well known for its role in immunity. A lesser known function of IL-12 is its role in hematopoiesis. The promising data obtained in the preclinical models of antitumor immunotherapy raised hope that IL-12 could be a powerful therapeutic agent against cancer. However, excessive clinical toxicity, largely due to repeat dose regimens, and modest clinical response observed in the clinical trials have pointed to the necessity to design protocols that minimize toxicity without affecting the anti-tumor effect of IL-12. We have focused on the lesser known role of IL-12 in hematopoiesis and hypothesized that an important clinical role for IL-12 in cancer may be as an adjuvant hematological cancer therapy. In this putative clinical function, IL-12 is utilized for the prevention of cancer therapy-related cytopenias, while providing concomitant anti-tumor responses over and above responses observed with the primary therapy alone. This putative clinical function of IL-12 focuses on the dual role of IL-12 in hematopoiesis and immunity.</p> <p>Methods</p> <p>We assessed the ability of IL-12 to facilitate hematopoietic recovery from radiation (625 rad) and chemotherapy (cyclophosphamide) in two tumor-bearing murine models, namely the EL4 lymphoma and the Lewis lung cancer models. Antitumor effects and changes in bone marrow cellularity were also assessed.</p> <p>Results</p> <p>We show herein that carefully designed protocols, in mice, utilizing IL-12 as an adjuvant to radiation or chemotherapy yield facile and consistent, multilineage hematopoietic recovery from cancer therapy-induced cytopenias, as compared to vehicle and the clinically-utilized cytokine granulocyte colony-stimulating factor (G-CSF) (positive control), while still providing concomitant antitumor responses over and above the effects of the primary therapy alone. Moreover, our protocol design utilizes single, low doses of IL-12 that did not yield any apparent toxicity.</p> <p>Conclusion</p> <p>Our results portend that despite its past failure, IL-12 appears to have significant clinical potential as a hematological adjuvant cancer therapy.</p

    Association of IL-4RA single nucleotide polymorphisms, HLA-DR and HLA-DQ in children with Alternaria-sensitive moderate-severe asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma afflicts 6% to 8% of the United States population, and severe asthma represents approximately 10% of asthmatic patients. Several epidemiologic studies in the United States and Europe have linked <it>Alternaria </it>sensitivity to both persistence and severity of asthma. In order to begin to understand genetic risk factors underlying <it>Alternaria </it>sensitivity and asthma, in these studies we examined T cell responses to <it>Alternaria </it>antigens, HLA Class II restriction and HLA-DQ protection in children with severe asthma.</p> <p>Methods</p> <p>Sixty children with <it>Alternaria</it>-sensitive moderate-severe asthma were compared to 49 children with <it>Alternaria</it>-sensitive mild asthma. We examined HLA-DR and HLA-DQ frequencies in <it>Alternaria</it>-sensitive asthmatic by HLA typing. To determine ratios of Th1/Th2 <it>Alternaria</it>-specific T-cells, cultures were stimulated in media alone, <it>Alternaria alternata </it>extract and Alt a1. Sensitivity to IL-4 stimulation was measured by up-regulation of CD23 on B cells.</p> <p>Results</p> <p>Children with <it>Alternaria</it>-sensitive moderate-severe asthma trended to have increased sensitivities to <it>Cladosporium </it>(46% versus 35%), to <it>Aspergillus </it>(43% versus 28%), and significantly increased sensitivities to trees (78% versus 57%) and to weeds (68% versus 48%). The IL-4RA ile75val polymorphism was significantly increased in <it>Alternaria</it>-sensitive moderate-severe asthmatics, 83% (0.627 allele frequency) compared to <it>Alternaria</it>-sensitive mild asthmatics, 57% (0.388 allele frequency). This was associated with increased sensitivity to IL-4 stimulation measured by significantly increased IL-4 stimulated CD23 expression on CD19+ and CD86+CD19+ B cells of <it>Alternaria</it>-sensitive moderate-severe asthmatics. IL-5 and IL-13 synthesis was significantly increased in <it>Alternaria</it>-sensitive moderate-severe asthmatics compared to mild asthmatics to <it>Alternaria </it>extract and Alt a1 stimulation. The frequency of HLA-DQB1*03 allele was significantly decreased in <it>Alternaria</it>-sensitive moderate-severe asthmatics compared to mild asthmatics, 39% versus 63%, with significantly decreased allele frequency, 0.220 versus 0.398.</p> <p>Summary</p> <p>In children with <it>Alternaria</it>-sensitive moderate severe asthma, there was an increased Th2 response to <it>Alternaria </it>stimulation and increased sensitivity to IL-4 stimulation. This skewing towards a Th2 response was associated with an increased frequency of the IL-4RA ile75val polymorphism. In evaluating the HLA association, there was a decreased frequency of HLA-DQB1*03 in <it>Alternaria</it>-sensitive moderate severe asthmatic children consistent with previous studies suggest that HLA-DQB1*03 may be protective against the development of mold-sensitive severe asthma.</p

    Phosphorylation of AMPA Receptors Is Required for Sensory Deprivation-Induced Homeostatic Synaptic Plasticity

    Get PDF
    Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca2+-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity

    Evidence for a retroviral insertion in TRPM1 as the cause of congenital stationary night blindness and leopard complex spotting in the horse

    Get PDF
    Leopard complex spotting is a group of white spotting patterns in horses caused by an incompletely dominant gene (LP) where homozygotes (LP/LP) are also affected with congenital stationary night blindness. Previous studies implicated Transient Receptor Potential Cation Channel, Subfamily M, Member 1 (TRPM1) as the best candidate gene for both CSNB and LP. RNA-Seq data pinpointed a 1378 bp insertion in intron 1 of TRPM1 as the potential cause. This insertion, a long terminal repeat (LTR) of an endogenous retrovirus, was completely associated with LP, testing 511 horses (χ²=1022.00, p<<0.0005), and CSNB, testing 43 horses (χ2=43, p<<0.0005). The LTR was shown to disrupt TRPM1 transcription by premature poly-adenylation. Furthermore, while deleterious transposable element insertions should be quickly selected against the identification of this insertion in three ancient DNA samples suggests it has been maintained in the horse gene pool for at least 17,000 years. This study represents the first description of an LTR insertion being associated with both a pigmentation phenotype and an eye disorder.Rebecca R. Bellone … David L. Adelson, Sim Lin Lim … et al

    HemaMax™, a Recombinant Human Interleukin-12, Is a Potent Mitigator of Acute Radiation Injury in Mice and Non-Human Primates

    Get PDF
    HemaMax, a recombinant human interleukin-12 (IL-12), is under development to address an unmet medical need for effective treatments against acute radiation syndrome due to radiological terrorism or accident when administered at least 24 hours after radiation exposure. This study investigated pharmacokinetics, pharmacodynamics, and efficacy of m-HemaMax (recombinant murine IL-12), and HemaMax to increase survival after total body irradiation (TBI) in mice and rhesus monkeys, respectively, with no supportive care. In mice, m-HemaMax at an optimal 20 ng/mouse dose significantly increased percent survival and survival time when administered 24 hours after TBI between 8–9 Gy (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by increases in plasma interferon-γ (IFN-γ) and erythropoietin levels, recovery of femoral bone hematopoiesis characterized with the presence of IL-12 receptor β2 subunit–expressing myeloid progenitors, megakaryocytes, and osteoblasts. Mitigation of jejunal radiation damage was also examined. At allometrically equivalent doses, HemaMax showed similar pharmacokinetics in rhesus monkeys compared to m-HemaMax in mice, but more robustly increased plasma IFN-γ levels. HemaMax also increased plasma erythropoietin, IL-15, IL-18, and neopterin levels. At non-human primate doses pharmacologically equivalent to murine doses, HemaMax (100 ng/Kg and 250 ng/Kg) administered at 24 hours after TBI (6.7 Gy/LD50/30) significantly increased percent survival of HemaMax groups compared to vehicle (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by a significantly higher leukocyte (neutrophils and lymphocytes), thrombocyte, and reticulocyte counts during nadir (days 12–14) and significantly less weight loss at day 12 compared to vehicle. These findings indicate successful interspecies dose conversion and provide proof of concept that HemaMax increases survival in irradiated rhesus monkeys by promoting hematopoiesis and recovery of immune functions and possibly gastrointestinal functions, likely through a network of interactions involving dendritic cells, osteoblasts, and soluble factors such as IL-12, IFN-γ, and cytoprotectant erythropoietin

    The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation

    Get PDF
    N-Methyl-d-aspartic acid (NMDA) receptors are widely expressed in the brain and are critical for many forms of synaptic plasticity. Subtypes of the NMDA receptor NR2 subunit are differentially expressed during development; in the forebrain, the NR2B receptor is dominant early in development, and later both NR2A and NR2B are expressed. In heterologous expression systems, NR2A-containing receptors open more reliably and show much faster opening and closing kinetics than do NR2B-containing receptors. However, conflicting data, showing similar open probabilities, exist for receptors expressed in neurons. Similarly, studies of synaptic plasticity have produced divergent results, with some showing that only NR2A-containing receptors can drive long-term potentiation and others showing that either subtype is capable of driving potentiation. In order to address these conflicting results as well as open questions about the number and location of functional receptors in the synapse, we constructed a Monte Carlo model of glutamate release, diffusion, and binding to NMDA receptors and of receptor opening and closing as well as a model of the activation of calcium-calmodulin kinase II, an enzyme critical for induction of synaptic plasticity, by NMDA receptor-mediated calcium influx. Our results suggest that the conflicting data concerning receptor open probabilities can be resolved, with NR2A- and NR2B-containing receptors having very different opening probabilities. They also support the conclusion that receptors containing either subtype can drive long-term potentiation. We also are able to estimate the number of functional receptors at a synapse from experimental data. Finally, in our models, the opening of NR2B-containing receptors is highly dependent on the location of the receptor relative to the site of glutamate release whereas the opening of NR2A-containing receptors is not. These results help to clarify the previous findings and suggest future experiments to address open questions concerning NMDA receptor function
    corecore