2,460 research outputs found

    Orientation-dependent binding energy of graphene on palladium

    Full text link
    Using density functional theory calculations, we show that the binding strength of a graphene monolayer on Pd(111) can vary between physisorption and chemisorption depending on its orientation. By studying the interfacial charge transfer, we have identified a specific four-atom carbon cluster that is responsible for the local bonding of graphene to Pd(111). The areal density of such clusters varies with the in-plane orientation of graphene, causing the binding energy to change accordingly. Similar investigations can also apply to other metal substrates, and suggests that physical, chemical, and mechanical properties of graphene may be controlled by changing its orientation.Comment: 5 pages, 6 figure

    Understanding single-top-quark production and jets at hadron colliders

    Full text link
    I present an analysis of fully differential single-top-quark production plus jets at next-to-leading order. I describe the effects of jet definitions, top-quark mass, and higher orders on the shapes and normalizations of the kinematic distributions, and quantify all theoretical uncertainties. I explain how to interpret next-to-leading-order jet calculations, and compare them to showering event generators. Using the program ZTOP, I show that HERWIG and PYTHIA significantly underestimate both s-channel and t-channel single-top-quark production, and propose a scheme to match the relevant samples to the next-to-leading-order predictions.Comment: 40 pgs., revtex4, 35 ps figs; added Fig. 4, 1 Ref., minor clarifications, to appear in Phys. Rev.

    Elastic constants of beta-eucryptite: A density functional theory study

    Full text link
    The five independent elastic constants of hexagonal β\beta-eucryptite have been determined using density functional theory (DFT) total energy calculations. The calculated values agree well, to within 15%, with the experimental data. Using the calculated elastic constants, the linear compressibility of β\beta-eucryptite parallel to the c-axis, χc\chi_c, and perpendicular to it, χa\chi_a, have been evaluated. These values are in close agreement to those obtained from experimentally known elastic constants, but are in contradiction to the direct measurements based on a three-terminal technique. The calculated compressibility parallel to the c-axis was found to positive as opposed to the negative value obtained by direct measurements. We have demonstrated that χc\chi_c must be positive and discussed the implications of a positive χc\chi_c in the context of explaining the negative bulk thermal expansion of β\beta-eucryptite.Comment: 3 eps figures, submitted for publicatio

    New alleles in calpastatin gene are associated with meat quality traits in pigs

    Get PDF
    Suggestive QTL affecting raw firmness scores and average Instron force, tenderness, juiciness, and chewiness on cooked meat were mapped to pig chromosome 2 using a three-generation intercross between Berkshire and Yorkshire pigs. Based on its function and location, the calpastatin (CAST) gene was considered to be a good candidate for the observed effects. Several missense and silent mutations were identified in CAST and haplotypes covering most of the coding region were constructed and used for association analyses with meat quality traits. Results demonstrated that one CAST haplotype was significantly associated with lower Instron force and cooking loss and higher juiciness and, therefore, this haplotype is associated with higher eating quality. Some of the sequence variation identified may be associated with differences in phosphorylation of CAST by adenosine cyclic 3′, 5′-monophosphate- dependent protein kinase and may in turn explain the meat quality phenotypic differences. The beneficial haplotype was present in all the commercial breeds tested and may provide significant improvements for the pig industry and consumers because it can be used in marker-assisted selection to produce naturally tender and juicy pork without additional processing steps

    Prototype tests for the ALICE TRD

    Full text link
    A Transition Radiation Detector (TRD) has been designed to improve the electron identification and trigger capability of the ALICE experiment at the Large Hadron Collider (LHC) at CERN. We present results from tests of a prototype of the TRD concerning pion rejection for different methods of analysis over a momentum range from 0.7 to 2 GeV/c. We investigate the performance of different radiator types, composed of foils, fibres and foams.Comment: Presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference, Lyon, October 15-20, 2000 (accepted for publication in IEEE TNS), Latex (IEEEtran.cls), 7 pages, 11 eps figure

    How Should We Measure? A Review of Circular Cities Indicators

    Get PDF
    As the world continues to urbanize, it is necessary to identify and implement new urban development models and strategies in order to meet the challenges of sustainable development. As cities continue to face challenges in becoming fully circular, the need to establish a framework to measure the circular economy in urban areas grows. Many definitions for circular cities have been developed and addressed in recent years, as have numerous indicators. To make the transition to a circular city, we must integrate the findings and develop a general definition and measurement framework. This article aims at outlining a framework for circular cities indicators based on their key characteristics, as well providing directions for fostering circularity at the city level. To accomplish this goal, we conducted a systematic review and analyzed key papers published in the field of circular economy to determine how circular cities are measured. Choosing the right indicators to use for developing, monitoring, and evaluating circular cities is a difficult task for urban policymakers, managers, and planners. This highlights the significance of standardized frameworks for urban indicators. As a result, the authors propose a framework and highlight some key points about circular cities and smart urban metabolism

    Rare earth element behaviour in apatite from the olympic dam Cu–U–Au–Ag deposit, South Australia

    Get PDF
    Apatite is a common magmatic accessory in the intrusive rocks hosting the giant ~1590 Ma Olympic Dam (OD) iron-oxide copper gold (IOCG) ore system, South Australia. Moreover, hydrothermal apatite is a locally abundant mineral throughout the altered and mineralized rocks within and enclosing the deposit. Based on compositional data for zoned apatite, we evaluate whether changes in the morphology and the rare earth element and Y (REY) chemistry of apatite can be used to constrain the fluid evolution from early to late hydrothermal stages at OD. The ~1.6 Ga Roxby Downs granite (RDG), host to the OD deposit, contains apatite as a magmatic accessory, locally in the high concentrations associated with mafic enclaves. Magmatic apatite commonly contains REY-poor cores and REY-enriched margins. The cores display a light rare earth element (LREE)-enriched chondrite-normalized fractionation pattern with a strong negative Eu anomaly. In contrast, later hydrothermal apatite, confined to samples where magmatic apatite has been obliterated due to advanced hematite-sericite alteration, displays a conspicuous, convex, middle rare earth element (MREE)-enriched pattern with a weak negative Eu anomaly. Such grains contain abundant inclusions of florencite and sericite. Within high-grade bornite ores from the deposit, apatite displays an extremely highly MREE-enriched chondrite-normalized fractionation trend with a positive Eu anomaly. Concentrations of U and Th in apatite mimic the behaviour of ∑REY and are richest in magmatic apatite hosted by RDG and the hydrothermal rims surrounding them. The shift from characteristic LREE-enriched magmatic and early hydrothermal apatite to later hydrothermal apatite displaying marked MREE-enriched trends (with lower U, Th, Pb and ∑REY concentrations) reflects the magmatic to hydrothermal transition. Additionally, the strong positive Eu anomaly in the MREE-enriched trends of apatite in high-grade bornite ores are attributable to alkaline fluid conditions.Sasha Krneta, Cristiana L. Ciobanu, Nigel J. Cook, Kathy Ehrig and Alkis Kontonikas-Charo

    Atomic-scale perspective on the origin of attractive step interactions on Si(113)

    Full text link
    Recent experiments have shown that steps on Si(113) surfaces self-organize into bunches due to a competition between long-range repulsive and short-range attractive interactions. Using empirical and tight-binding interatomic potentials, we investigate the physical origin of the short-range attraction, and report the formation and interaction energies of steps. We find that the short-range attraction between steps is due to the annihilation of force monopoles at their edges as they combine to form bunches. Our results for the strengths of the attractive interactions are consistent with the values determined from experimental studies on kinetics of faceting.Comment: 4 pages, 3 figures, to appear in Phys. Rev B, Rapid Communication
    • …
    corecore