22 research outputs found

    Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer's type

    Get PDF
    Aims The aim of this study was to analyze if the pre-administration of anthocyanin on memory and anxiety prevented the effects caused by intracerebroventricular streptozotocin (icv-STZ) administration-induced sporadic dementia of Alzheimer's type (SDAT) in rats. Moreover, we evaluated whether the levels of nitrite/nitrate (NOx), Na+,K+-ATPase, Ca2 +-ATPase and acethylcholinesterase (AChE) activities in the cerebral cortex (CC) and hippocampus (HC) are altered in this experimental SDAT. Main methods Male Wistar rats were divided in 4 different groups: control (CTRL), anthocyanin (ANT), streptozotocin (STZ) and streptozotocin + anthocyanin (STZ + ANT). After seven days of treatment with ANT (200 mg/kg; oral), the rats were icv-STZ injected (3 mg/kg), and four days later the behavior parameters were performed and the animals submitted to euthanasia. Key findings A memory deficit was found in the STZ group, but ANT treatment showed that it prevents this impairment of memory (P < 0.05). Our results showed a higher anxiety in the icv-STZ group, but treatment with ANT showed a per se effect and prevented the anxiogenic behavior induced by STZ. Our results reveal that the ANT treatment (100 μM) tested displaces the specific binding of [3H] flunitrazepam to the benzodiazepinic site of GABAA receptors. AChE, Ca+-ATPase activities and NOx levels were found to be increased in HC and CC in the STZ group, which was attenuated by ANT (P < 0.05). STZ decreased Na+,K+-ATPase activity and ANT was able to prevent these effects (P < 0.05). Significance In conclusion, these findings demonstrated that ANT is able to regulate ion pump activity and cholinergic neurotransmission, as well as being able to enhance memory and act as an anxiolytic compound in animals with SDAT

    Thrombocytopenia and platelet activity in dogs experimentally infected with Rangelia vitalii

    No full text
    The aim of this study was to evaluate the platelet count, coagulation time and platelet activity in dogs experimentally infected with Rangelia vitalii during the acute phase of the disease. For this study, 12 young dogs (females) were used, separated in two groups. Group A (uninfected control) was composed by healthy dogs (n=5), and group B consisted of R. vitalii-infected animals (n=7). After being inoculated with R. vitalii-infected blood, animals were monitored by blood smear examinations, which showed intra-erythrocytic forms of the parasite five days post-inoculation (PI). Blood samples were collected on days 0, 10, 20 and 30 PI. The material collected was placed in tubes containing EDTA for quantification of platelets, citrate anticoagulant platelet aggregation, and measuring the clotting time. Right after blood collection on days 10 and 20 PI, dogs were anesthetized for collecting bone marrow samples. A significant reduction (P&lt;0.01) of the number of platelets was observed in R. vitalii-infected blood, when compared with uninfected dogs on days 10 and 20 PI. Additionally, macro-platelets were observed only in infected dogs. Prothrombin time and activated partial thromboplastin time did not differ between infected and uninfected dogs. The megakaryocyte count increased (P&lt;0.01) significantly in infected dogs when compared with uninfected ones on days 10 and 20 PI. Platelet aggregation decreased (P&lt;0.01) significantly in infected dogs in comparison to the control on days 10 and 20 PI. Therefore, rangeliosis in dogs causes a severe thrombocytopenia during the acute phase of infection. This platelets reduction probably occurred due to splenic sequestration and/or immune-mediated thrombocytopenia. (C) 2011 Elsevier B.V. All rights reserved

    Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats

    No full text
    Anthocyanins are a group of natural phenolic compounds responsible for the color to plants and fruits. These compounds might have beneficial effects on memory and have antioxidant properties. In the present study we have investigated the therapeutic efficacy of anthocyanins in an animal model of cognitive deficits, associated to Alzheimer's disease, induced by scopolamine. We evaluated whether anthocyanins protect the effects caused by SCO on nitrite/nitrate (NOx) levels and Na+,K+-ATPase and Ca2+-ATPase and acetylcholinesterase (AChE) activities in the cerebral cortex and hippocampus (of rats. We used 4 different groups of animals: control (CTRL), anthocyanins treated (ANT), scopolamine-challenged (SCO), and scopolamine + anthocyanins (SCO + ANT). After seven days of treatment with ANT (200 mg kg−1; oral), the animals were SCO injected (1 mg kg−1; IP) and were performed the behavior tests, and submitted to euthanasia. A memory deficit was found in SCO group, but ANT treatment prevented this impairment of memory (P < 0.05). The ANT treatment per se had an anxiolytic effect. AChE activity was increased in both in cortex and hippocampus of SCO group, this effect was significantly attenuated by ANT (P < 0.05). SCO decreased Na+,K+-ATPase and Ca2+-ATPase activities in hippocampus, and ANT was able to significantly (P < 0.05) prevent these effects. No significant alteration was found on NOx levels among the groups. In conclusion, the ANT is able to regulate cholinergic neurotransmission and restore the Na+,K+-ATPase and Ca2+-ATPase activities, and also prevented memory deficits caused by scopolamine administration

    Experimental infection with Rangelia vitalii in dogs: Acute phase, parasitemia, biological cycle, clinical-pathological aspects and treatment

    No full text
    Recently we conducted the molecular characterization of Rangelia vitalii, a protozoan with high pathogenicity for young dogs in southern Brazil. To date, the descriptions of the disease have been restricted to natural infection cases. Therefore, this study aimed to evaluate the parasitemia, biological cycles and clinical-pathological findings in dogs experimentally infected with R. vitalii in the acute phase of disease, and also aimed to test a therapeutic protocol based on the diminazene aceturate. For this study, we used 12 young dogs (females), separated into two groups. Group A was composed of healthy dogs, not-infected (n = 5), and Group B consisted of animals infected with R. vitalii (n = 7). After infection, the animals were monitored by blood smear examinations, which showed intra-erythrocytic forms of the parasite 5 days post-infection (PI). Parasitemia increased progressively in these animals and had the highest peak of circulating parasites between 9 and 11 days PI. Subsequently, the parasitemia reduced and the protozoan was seen inside the leukocytes in days 17, 19 and 21 PI. The most prominent clinical signs observed at the 20 day PI of experiment were lethargy, fever and anorexia. We observed a decrease of hematocrit of infected animals compared with not-infected dogs, featuring a moderate anemia. Pathological evaluation of one dog in Group B at day 21 PI revealed splenomegaly, hepatomegaly, lymphadenopathy, and hemorrhages at necropsy. Histological examination showed only follicular hyperplasia in the spleen and lymph nodes, and the etiologic agent in the vascular endothelium. At 21 days PI, it was performed the treatment of dogs in Group B (n = 6) with a single dose of diminazene aceturate, which showed a curative efficacy of 100% in cleaning R. vitalii from blood of infected dogs. (C) 2011 Elsevier Inc. All rights reserved

    Cholinesterase as inflammatory markers in a experimental infection by Trypanosoma evansi in rabbits

    No full text
    The aim of this study is to evaluate the role of cholinesterases as an inflammatory marker in acute and chronic infection by Trypanosoma evansi in rabbits experimentally infected. Twelve adult female New Zealand rabbits were used and divided into two groups with 6 animals each: control group (rabbits 1-6) and infected group (rabbits 7-12). Infected group received intraperitoneally 0.5 mL of blood from a rat containing 108 parasites per animal. Blood samples used for cholinesterases evaluation were collected on days 0, 2, 7, 12, 27, 42, 57, 87, 102 and 118 days post-inoculation (PI). Increased activity (P<0.05) of butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) were observed in the blood on days 7 and 27, respectively and no differences were observed in cholinesterase activity in other periods. No significant difference in AChE activity (P>0.05) was observed in the encephalic structures. The increased activities of AChE and BChE probably have a pro-inflammatory purpose, attempting to reduce the concentration of acetylcholine, a neurotransmitter which has an anti-inflammatory property. Therefore, cholinesterase may be inflammatory markers in infection with T. evansi in rabbits.<br>O objetivo do presente estudo é avaliar o papel das colinesterases como marcadores inflamatórios nas fases aguda e crônica da infecção por T. evansi em coelhos infectados experimentalmente. Foram utilizados 12 coelhos adultos, fêmeas, da raça Nova Zelândia, divididos em dois grupos: um grupo controle, com seis animais (coelhos 1-6), e um grupo infectado, com seis animais (coelhos 7-12). Os animais pertencentes ao grupo infectados receberam, pela via intraperitoneal, 0,5 mL de sangue de rato contendo 108 tripanossomas por animal. Amostras do sangue utilizado para avaliação das colinesterases foram coletadas nos dias 0, 2, 7, 12, 27, 42, 57, 87, 102 e 118 pós-inoculação (PI). Aumento (P<0,05) na atividade da butirilcolinesterase (BChE) e da acetilcolinesterase foi observado no sangue nos dias 7 e 27 (PI), respectivamente e não foram observadas diferenças na atividade da colinesterase em outros períodos. Nenhuma diferença significativa na atividade da AChE (P>0,05) foi observada nas estruturas encefálicas. O aumento de atividade da AChE e BChE provavelmente tenha finalidade pró-inflamatória, a fim de reduzir as concentrações de acetilcolina, neurotransmissor que apresenta propriedade anti-inflamatória. Portanto, as colinesterases podem ser marcadores inflamatórios na infecção por T. evansi em coelhos

    Trypanosoma evansi: Adenosine deaminase activity in the brain of infected rats

    No full text
    The study was undertaken to evaluate changes in the activity of adenosine deaminase (ADA) in brains of rats infected by Trypanosoma evansi. Each rat was intraperitoneally infected with 10(6) trypomastigotes either suspended in fresh (group A; n = 13) and cryopreserved blood (group B; n = 13). Thirteen animals were used as control (group C). ADA activity was estimated in the cerebellum, cerebral cortex, striatum and hippocampus. No differences (P > 0.05) in ADA activity were observed in the cerebellum between infected and non-infected animals. Significant (P < 0.05) reductions in ADA activity occurred in cerebral cortex in acutely (day 4 post-infection; PI) and chronically (day 20 PI) infected rats. ADA activity was significantly (P < 0.05) decreased in the hippocampus in acutely infected rats, but significantly (P < 0.05) increased in the chronically infected rats. Significant (P < 0.05) reductions in ADA activity occurred in the striatum of chronically infected rats. Parasites could be found in peripheral blood and brain tissue through microscopic examination and PCR assay, respectively, in acutely and chronically infected rats. The reduction of ADA activity in the brain was associated with high levels of parasitemia and anemia in acute infections. Alterations in ADA activity of the brain in T. evansi-infected rats may have implications for pathogenesis of the disease. (C) 2010 Elsevier Inc. All rights reserved
    corecore