1,369 research outputs found

    Polarization measurements and their perspectives: PVLAS Phase II

    Full text link
    We sketch the proposal for a "PVLAS-Phase II" experiment. The main physics goal is to achieve the first direct observation of non-linear effects in electromagnetism predicted by QED and the measurement of the photon-photon scattering cross section at low energies (1-2 eV). Physical processes such as ALP and MCP production in a magnetic field could also be accessible if sensitive enough operation is reached. The short term experimental strategy is to compact as much as possible the dimensions of the apparatus in order to bring noise sources under control and to attain a sufficient sensitivity. We will also briefly mention future pespectives, such as a scheme to implement the resonant regeneration principle for the detection of ALPs.Comment: Paper submitted to the proceedings of the "4th Patras Workshop on Axions, WIMPs and WISPs", DESY, Hamburg Site /Germany, 18-21 June 200

    The Shifting Tax Burden under the Administrative Expense Election

    Get PDF

    VUV photoemission studies of candidate Large Hadron Collider vacuum chamber materials

    Get PDF
    In the context of future accelerators and, in particular, the beam vacuum of the Large Hadron Collider (LHC), a 27 km circumference proton collider to be built at CERN, VUV synchrotron radiation (SR) has been used to study both qualitatively and quantitatively candidate vacuum chamber materials. Emphasis is given to show that angle and energy resolved photoemission is an extremely powerful tool to address important issues relevant to the LHC, such as the emission of electrons that contributes to the creation of an electron cloud which may cause serious beam instabilities and unmanageable heat loads on the cryogenic system. Here we present not only the measured photoelectron yields from the proposed materials, prepared on an industrial scale, but also the energy and in some cases the angular dependence of the emitted electrons when excited with either a white light (WL) spectrum, simulating that in the arcs of the LHC, or monochromatic light in the photon energy range of interest. The effects on the materials examined of WL irradiation and /or ion sputtering, simulating the SR and ion bombardment expected in the LHC, were investigated. The studied samples exhibited significant modifications, in terms of electron emission, when exposed to the WL spectrum from the BESSY Toroidal Grating Monochromator beam line. Moreover, annealing and ion bombardment also induce substantial changes to the surface thereby indicating that such surfaces would not have a constant electron emission during machine operation. Such characteristics may be an important issue to define the surface properties of the LHC vacuum chamber material and are presented in detail for the various samples analyzed. It should be noted that all the measurements presented here were recorded at room temperature, whereas the majority of the LHC vacuum system will be maintained at temperatures below 20 K. The results cannot therefore be directly applied to these sections of the machine until measurements at cryogenic temperatures, i.e., in the presence of cryosorbed gas layers, are obtained. However, these results are directly relevant to all the warm regions of the LHC vacuum system, such as the experimental vacuum chambers and warm element vacuum chambers in the insertion regions

    VUV photoemission studies of candidate LHC vacuum chamber materials

    Get PDF
    In the context of future accelerators and, in particular, the beam vacuum of the LargeHadron Collider (LHC), a 27 km circumference proton collider to be built at CERN, VUVsynchrotron radiation (SR) has been used to study both qualitatively and quantitatively candidatevacuum chamber materials. Emphasis is given to show that angle and energy resolvedphotoemission is an extremely powerful tool to address important issues relevant to the LHC, suchas the emission of electrons that contribute to the creation of an electron cloud which may causeserious beam instabilities. Here we present not only the measured photoelectron yields (PY)from the proposed materials, prepared on an industrial scale, but also the energy and, in some cases,the angular dependence of the emitted electrons when excited with either a white light (WL)spectrum, simulating that in the arcs of the LHC or monochromatic light in the photon energy rangeof interest. The effects on the materials examined of WL irradiation and/or ion sputtering,simulating the SR and ion bombardment expected in the LHC, were investigated. The studiedsamples exhibited significant modifications, in terms of electron emission, when exposed to the WLspectrum from the BESSY TGM7 beamline. Moreover, annealing and ion bombardment alsoinduce substantial changes to the surface thereby indicating that such surfaces would not have aconstant electron emission during machine operation. Such characteristics may be an importantissue to define the surface properties of the LHC vacuum chamber material and are presented indetail for the various samples analysed

    Chemotherapy accelerates immune-senescence and functional impairments of Vδ2pos T cells in elderly patients affected by liver metastatic colorectal cancer.

    Get PDF
    Human (gamma delta) γδ T cells are unconventional innate-like lymphocytes displaying a broad array of anti-tumor activities with promising perspectives in cancer immunotherapy. In this context, Vδ2pos T cells represent the preferential target of several immunotherapy protocols against solid tumors. However, the impact of both aging and chemotherapy (CHT) on Vδ2pos T cells is still unknown. The present study evaluates with multi-parametric flow cytometry the frequencies, terminal differentiation, senescence and effector-functions of peripheral blood and tumor infiltrating Vδ2pos T cells purified from liver metastases (CLM) of patients affected by colorectal cancer (CRC) compared to those of sex- and age-matched healthy donors. The peripheral blood of CLM patients underwent CHT is characterized by decreased amounts of Vδ2pos T cells showing a relative increase of terminally-differentiated CD27neg/CD45RApos (TEMRA) cells. The enrichment of this latter subset is associated with an increased expression of the senescent marker CD57. The acquisition of CD57 on TEMRA Vδ2pos T cells is also coupled with impairments in cytotoxicity and production of TNF-α and IFN-γ. These features resemble the acquisition of an immune-senescent profile by Vδ2pos T cells from CLM patients that received CHT, a phenomenon that is also associated with the loss of the co-stimulatory marker CD28 and with the induced expression of CD16. The group of CLM patients underwent CHT and older than 60 years old showed higher frequencies of CD57pos and TEMRA Vδ2pos T cells. Similar results were found for tumor infiltrating Vδ2pos T cell subset purified from CLM specimens of patients treated with CHT. The toxicity of CHT regimens also affects the homeostasis of Vδ2pos T cells by inducing higher frequencies of circulating CD57pos TEMRA subset in CLM underwent CHT and younger than 60 years old. Taken together, our data demonstrate that the enrichment of senescent Vδ2pos T cells in CLM patients is not only induced by patients' aging but also by the toxicity of CHT that further accelerates the accumulation of CD57pos TEMRA cells highly dysfunctional in their anti-tumor activities. These results are important to both predict the clinical outcome of CLM and to optimize those protocols of cell cancer immunotherapy employing unconventional Vδ2pos T cells

    Hydrolysis of caprine and ovine milk proteins, brought about by aspartic peptidases from Silybum marianum flowers

    Get PDF
    The flowers of cardoon (Asteraceae) are a rich source of aspartic peptidases which possess milk clotting activity – and are thus used in traditional cheesemaking in the Iberian Peninsula. This study was aimed at characterizing the enzymatic action of the aspartic peptidases present in flowers of Silybum marianum (L.) Gaertn. (Asteraceae), specifically upon degradation of caseins. The proteolytic activities toward Na-caseinates previously prepared from caprine and ovine milks were studied, in a comparative fashion, using urea-PAGE, tricine-SDS-PAGE, densitometry, electroblotting and sequencing. Caprine as1- and b-caseins were degraded up to 68% and 40%, respectively, during 24 h of incubation. Only one important and well-defined band corresponding to a molecular weight of 14.4 kDa – i.e. a fragment of b-casein, was observed by 12 h of hydrolysis. By 24 h of incubation, ovine as- and b-caseins were degraded up to 76% and 19%, respectively. In what concerns specificity, the major cleavage site in ovine caseinate was Leu99-Arg100 in as1-casei

    Potential remedies against the high Synchrotron Radiation induced heat load for future highest energy proton circular colliders

    Get PDF
    We propose a new method for handling the high synchrotron radiation SR induced heat load of future circular hadron colliders like FCC hh . FCC hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MWof electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuumissues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC hh projects to come, rendering them more cost effective and sustainabl

    Recognizing motor imagery tasks from EEG oscillations through a novel ensemble-based neural network architecture

    Get PDF
    Brain-Computer Interfaces (BCI) provide effective tools aimed at recognizing different brain activities, translate them into actions, and enable humans to directly communicate through them. In this context, the need for strong recognition performances results in increasingly sophisticated machine learning (ML) techniques, which may result in poor performance in a real application (e.g., limiting a real-time implementation). Here, we propose an ensemble approach to effectively balance between ML performance and computational costs in a BCI framework. The proposed model builds a classifier by combining different ML models (base-models) that are specialized to different classification sub-problems. More specifically, we employ this strategy with an ensemble-based architecture consisting of multi-layer perceptrons, and test its performance on a publicly available electroencephalography-based BCI dataset with four-class motor imagery tasks. Compared to previously proposed models tested on the same dataset, the proposed approach provides greater average classification performances and lower inter-subject variability
    • …
    corecore