111 research outputs found

    Geochemical background values in aquatic systems

    Get PDF
    Pollutants, natural sources, anthropogenic sources, background values, GIS, hierarchical cluster analysis

    Geochemical features of thermal waters at Benetutti (Sardinia)

    Get PDF
    This paper reports the geochemistry of the thermal and cold waters at Benetutti in central Sardinia. Both major and trace components in 24 water samples were analysed using various techniques. The thermal waters show a sodium chloride composition and a salinity of 0.5 g/L; they are characterised by a pH of 9.5-9.7, very low magnesium (0.01-0.1 mg/L), and much higher F, B, Li, Rb, Cs, and Mo concentrations than in the cold waters of the area. No variations in temperature, flow, or chemical composition were observed at the thermal springs for which records dating back 20 years are available. Subsurface reservoirs associated with the thermal springs are of a low enthalpy (calculated temperature at depth is about 60°C), and are therefore candidates for direct uses, such as balneology, space heating, and horticulture

    The abandoned antimony-mines of SE Sardinia: impact on surface waters

    Get PDF
    This study investigates the impact of abandoned Sb-mines on the Flumendosa River, which is the most important water resource in southern Sardinia. Hydrogeochemical surveys carried out in 2005 and 2006 indicated a significant impact of waters flowing out from adits, slag, tailings and waste materials on surface waters. The contaminated waters show alkaline pH, and high dissolved SO4, Sb and As (up to 1900, 9.6 and 3.5 mg/L, respectively). Although the flow rates of drainages from the mining area are usually low (in the range of < 0.1 to 1 L/s), the contribution to dissolved concentrations of Sb in the streams downstream of mines is high. Sampling under high flow conditions in the Flumendosa River before the confluence with the contaminated streams showed Sb concentrations below the limits established by the guidelines of World Health Organization for drinking water (i.e. 20 g/L), while downstream of the confluence dissolved Sb was 32 g/L. Contamination in the Flumendosa extended 16 km, and attenuation (15 g/L Sb) was only observed close to the Flumendosa mouth

    Thallium contamination in the Raibl Mine Site stream drainage system (Eastern Alps, Italy)

    Get PDF
    The Raibl mine (Cave del Predil village, northern Italy) belongs to the Pb–Zn minerogenetic district in the southeastern Alps, hosted in Middle Triassic carbonates. The drainage water quality reflects the high acid-buffering capacity of the carbonate rocks, which controls the mobility of most metals. In particular, Fe is non-detectable in solution, having formed hydrous-oxides precipitates. Molybdenum, Ni, Zn, Cd, Pb, and Tl are present, and the Pb, Tl, and Zn concentrations sometimes exceed the Italian regulatory thresholds. Thallium concentrations substantially exceed the 2 µg/L limit at some sampling stations, ranging between 12 and 30 µg/L in the mine drainage, and reaching 5 µg/L downstream of the mine site, despite strong dilution. The data indicate that Tl behaves almost conservatively and is not significantly scavenged by the Fe precipitates. The elevated Tl represents a potential risk for the stream ecosystem. Although Tl is not regulated in drinking water in Italy or the European Community, its distribution in natural waters may help to determine if health actions should be taken

    Assessing Background Values of Regulated Parameters in Groundwater Bodies of Sardinia (Italy)

    Get PDF
    Abstract The groundwater bodies in the European Union should be classified on the basis of their chemical status according to the European regulations. To this purpose, the background values for electrical conductivity, chloride, sulfate, fluoride and lead in groundwater bodies hosted in carbonatic rocks in Sardinia (Italy) were estimated. Background values were dependent on geological (lithology and mineralization) and geographical (distance from the coast) features of aquifers. Results indicate that statistical methods should be integrated with hydrogeochemical investigations for a correct assessment of the background values

    Combining hydrogeochemistry, statistics and explorative mapping to estimate regional threshold values of trace elements in groundwater (Sardinia, Italy)

    Get PDF
    Assessing geochemical baseline and threshold values of potentially toxic elements at adequate scales is fundamental for distinguishing geogenic contamination from anthropogenic pollution in groundwater. This study was aimed to estimate the regional threshold values of Li, Be, B, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Te, Ba, Hg, Tl, Pb, Bi, and U (elements listed according to atomic numbers) in groundwater, compare results to guidelines established for drinking water and the protection of groundwater from contamination, investigate the geographical distribution of trace elements, and assess the potential influence of water-rock interaction. A pre-selection aimed at excluding groundwater samples affected by known anthropogenic activities was carefully carried out based on hydrogeochemical characteristics of waters and considering the potential sources of contamination. The resulting dataset was comprised of 1227 groundwater sampling sites located in Sardinia (Italy). Undetected values were treated using the Regression on Order Statistics method. For elements containing &gt;75 % of undetected values and/or a limited number of samples in the dataset (Li, Rb, Sr, Mo, Ag, Te, Tl, Sb, Hg and Bi), the threshold values were estimated using either the 95th or 97.7th percentiles. For the other elements the mean + 2SD (Standard Deviation), the median + 2MAD (Median Absolute Deviation), and the TIF (Tukey Inner Fence) estimators were also calculated. Geochemical maps allowed to recognize the threshold value of each element at different scales. Regional threshold values of the regulated elements B, Al, V, Cr, Cu and Cd in groundwater were below the Italian and World Health Organization drinking water guidelines, whereas Mn and As were above them. Regional threshold values estimated with TIF exceeded the drinking water guidelines for Ni, Se, Pb and U. Results of this study showed that high concentrations of trace elements in groundwater were primarily dependent on the corresponding amount in parent materials with which the groundwater came into contact. Physical-chemical parameters and geochemical characteristics may contribute to enhancing concentrations of some trace elements in groundwater, e.g. As via reductive dissolution of Fe(III)-Mn(IV) hydroxides/oxides, Pb via formation of stable aqueous complexes, and other elements via adsorption onto fine particles with size below 0.4 μm (i.e. the pore size of filters used). Maps drawn on the centered log-ratio (clr) transformation of hydrogeochemical data, following the CoDA (Compositional Data Analysis) approach, allowed to pinpoint critical areas to be investigated in more detail. For each geological complex, groundwater samples likely representing nearly pristine conditions were identified. The monitoring of these representative groundwater samples may help to pinpoint eventual changes in environmental conditions

    Geochemistry, stable isotopes and statistic tools to estimate threshold and source of nitrate in groundwater (Sardinia, Italy)

    Get PDF
    In the European Union, nitrate vulnerable zone (NVZ) should be designed for the mitigation of nitrate (NO3−) contamination caused by agricultural practices. Before establishing new NVZ, the sources of NO3− must be recognized. A geochemical and multiple stable isotopes approach (hydrogen, oxygen, nitrogen, sulfur and boron) and statistical tools were applied to define the geochemical characteristics of groundwater (60 samples), calculate the local NO3− threshold and assess potential sources of NO3− contamination in two study areas (hereafter Northern and Southern), located in a Mediterranean environment (Sardinia, Italy). Results of the integrated approach applied to two case study, permits to highlight the strengths of integrating geochemical and statistical methods to provide nitrate source identification as a reference by decision makers to remediate and mitigate nitrate contamination in groundwater. Hydrogeochemical features in the two study areas were similar: near neutral to slightly alkaline pH, electrical conductivity in the range of 0.3 to 3.9 mS/cm, and chemical composition ranging from Ca-HCO3− at low salinity to Na-Cl− at high salinity. Concentrations of NO3− in groundwater were in the range of 1 to 165 mg/L, whereas the nitrogen reduced species were negligible, except few samples having NH4+ up to 2 mg/L. Threshold values in the studied groundwater samples were between 4.3 and 6.6 mg/L NO3−, which was in agreement with previous estimates in Sardinian groundwater. Values of δ34S and δ18OSO4 of SO42− in groundwater samples indicated different sources of SO42−. Sulfur isotopic features attributed to marine SO42− were consistent with groundwater circulation in marine-derived sediments. Other source of SO42− were recognize due to the oxidation of sulfide minerals, to fertilizers, manure, sewage fields, and SO42− derived from a mix of different sources. Values of δ15N and δ18ONO3 of NO3− in groundwater samples indicated different biogeochemical processes and NO3− sources. Nitrification and volatilization processes might have occurred at very few sites, and denitrification was likely to occur at specific sites. Mixing among various NO3− sources in different proportions might account for the observed NO3− concentrations and the nitrogen isotopic compositions. The SIAR modeling results showed a prevalent NO3− source from sewage/manure. The δ11B signatures in groundwater indicated the manure to be the predominant NO3− source, whereas NO3− from sewage was recognized at few sites. Geographic areas showing either a predominant process or a defined NO3− source where not recognize in the studied groundwater. Results indicate widespread contamination of NO3− in the cultivated plain of both areas. Point sources of contamination, due to agricultural practices and/or inadequate management of livestock and urban wastes, were likely to occur at specific sites

    Impatto ambientale dell'attività mineraria in Sardegna: studi mineralogici e geochimici

    Get PDF
    Sardinia is characterized by a large variety of geologic and hydrologic environments, and by a rich wealth of mineral resources, that fueled a millennial history of mining activity. Therefore, it provides an excellent ground for studies of the environmental impact of mining activity. In this communication, we summarize the results of our studies, specifically concerning the deposits of Baccu Locci (polymetallic�Pb,As), Furtei (epithermal Au), Monteponi (Pb-Zn-Ag), and Montevecchio (Pb-Zn-Ag). In abandoned mining districts (Baccu Locci, Monteponi, and Montevecchio), because of a poor management of environmental issues, we observe significant heavy metal contamination. On the other hand, in the active Furtei mine the first four years of exploitation did not cause remarkable changes with respect to pre-mining baseline conditions

    A methodological approach for the identification of sulphate sources in the Portoscuso area (south-western Sardinia)

    Get PDF
    Several detrimental effects due to intense industrial activities affect the groundwater of the Portoscuso area (SW Sardinia, Italy) such that the Italian Government has designed the whole territory as a contaminated site of national interest (D.M., March 12, 2003). Groundwater pollution is a crucial environmental issue in this area, where a volcanic ignimbrite succession up to 500 m thick outcrops, locally covered by sand deposits of variable thickness. Groundwater upgradient to the industrial district shows sulphate concentrations exceeding the background value of 450 mg/L calculated for the area (Vecchio et al., 2011). In order to verify the origin of sulphate, multidisciplinary investigations were carried out on the geochemical features and stable isotope ratios in groundwater

    Natural attenuation can lead to environmental resilience in mine environment

    Get PDF
    Four streams flowing in the Iglesiente and Arburese mine districts (SW Sardinia, Italy), exploited for zinc (Zn) and lead (Pb) extraction from sulphides and secondary non-sulphide mineralization (calamine ores), have been studied combining investigations from the macroscale (hydrologic tracer techniques) to the microscale (X-ray powder diffraction, scanning electron microscopy, X-ray absorption spectroscopy). In the investigated area, concerns arise from release of metals to water during weathering of ore minerals and mine-waste. Specifically, Zn is observed at extremely high concentrations (10s of mg/L or more) in waters in some of the investigated catchments. The results from synoptic sampling campaigns showed marked differences of Zn loads, from 6.3 kg/day (Rio San Giorgio) to 2000 kg/day (Rio Irvi). Moreover, natural attenuation of metals was found to occur i) through precipitation of Fe compounds (Fe oxy/hydroxides and “green rust”), ii) by means of the authigenic formation of metal sulphides promoted by microbial sulphate reduction, iii) by metal intake in roots and stems of plants (Phragmites australis and Juncus acutus) and by immobilization in the rhizosphere, and iv) by cyanobacterial biomineralization processes that lead to formation of Zn-rich phases (hydrozincite and amorphous Zn-silicate). The biologically mediated natural processes that lead to significant abatement and/or reduction of metal loads, are the response of environmental systems to perturbations caused from mine activities, and can be considered part of the resilience of the system itself. The aim of this study is to understand the effect of these processes on the evolution of the studied systems towards more stable and, likely, resilient conditions, e.g. by limiting metal mobility and favouring the improvement of the overall quality of water. The understanding of how ecosystems adapt and respond to contamination, and which chemical and physical factors control these natural biogeochemical barriers, can help to plan effective remediation actions
    corecore