339 research outputs found

    Towards a Casimir force measurement between micromachined parallel plate structures

    Get PDF
    Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however, measurement of the Casimir force between parallel plates with sub-micron separation distance is still a challenging task, since it becomes extremely difficult to maintain sufficient parallelism between the plates. The Casimir force can significantly influence the operation of micro devices and to realize reliable and reproducible devices it is necessary to understand and experimentally verify the influence of the Casimir force at sub-micron scale. In this paper, we present the design principle, fabrication and characterization of micromachined parallel plate structures that could allow the measurement of the Casimir force with tunable separation distance in the range of 100 to 1000 nm. Initially, a gold coated parallel plate structure is explored to measure the Casimir force, but also other material combinations could be investigated. Using gold-silicon eutectic bonding, a reliable approach to bond chips with integrated suspended plates together with a well-defined separation distance in the order of 1–2 μm is developed

    Similar dissection of sets

    Get PDF
    In 1994, Martin Gardner stated a set of questions concerning the dissection of a square or an equilateral triangle in three similar parts. Meanwhile, Gardner's questions have been generalized and some of them are already solved. In the present paper, we solve more of his questions and treat them in a much more general context. Let DRdD\subset \mathbb{R}^d be a given set and let f1,...,fkf_1,...,f_k be injective continuous mappings. Does there exist a set XX such that D=Xf1(X)...fk(X)D = X \cup f_1(X) \cup ... \cup f_k(X) is satisfied with a non-overlapping union? We prove that such a set XX exists for certain choices of DD and {f1,...,fk}\{f_1,...,f_k\}. The solutions XX often turn out to be attractors of iterated function systems with condensation in the sense of Barnsley. Coming back to Gardner's setting, we use our theory to prove that an equilateral triangle can be dissected in three similar copies whose areas have ratio 1:1:a1:1:a for a(3+5)/2a \ge (3+\sqrt{5})/2

    Spin-polarized Tunneling in Hybrid Metal-Semiconductor Magnetic Tunnel Junctions

    Full text link
    We demonstrate efficient spin-polarized tunneling between a ferromagnetic metal and a ferromagnetic semiconductor with highly mismatched conductivities. This is indicated by a large tunneling magnetoresistance (up to 30%) at low temperatures in epitaxial magnetic tunnel junctions composed of a ferromagnetic metal (MnAs) and a ferromagnetic semiconductor (GaMnAs) separated by a nonmagnetic semiconductor (AlAs). Analysis of the current-voltage characteristics yields detailed information about the asymmetric tunnel barrier. The low temperature conductance-voltage characteristics show a zero bias anomaly and a V^1/2 dependence of the conductance, indicating a correlation gap in the density of states of GaMnAs. These experiments suggest that MnAs/AlAs heterostructures offer well characterized tunnel junctions for high efficiency spin injection into GaAs.Comment: 14 pages, submitted to Phys. Rev.

    Accounting for Slow J/psi from B Decay

    Full text link
    A slow J/psi excess exists in the inclusive B -> J/psi+X spectrum, and is indicative of some hadronic effect. From color octet nature of c cbar pair in b-> c cbar s decay, one such possibility would be B -> J/psi+ K_g decay, where K_g is a hybrid resonance with sbar g q constituents. We show that a K_g resonance of ~ 2 GeV mass and suitably broad width could be behind the excess.Comment: 4 pages, 2 figures. To appear in Phys. Rev.

    Proton strangeness form factors in (4,1) clustering configurations

    Full text link
    We reexamine a recent result within a nonrelativistic constituent quark model (NRCQM) which maintains that the uuds\bar s component in the proton has its uuds subsystem in P state, with its \bar s in S state (configuration I). When the result are corrected, contrary to the previous result, we find that all the empirical signs of the form factors data can be described by the lowest-lying uuds\bar s configuration with \bar s in P state that has its uuds subsystem in SS state (configuration II). Further, it is also found that the removal of the center-of-mass (CM) motion of the clusters will enhance the contributions of the transition current considerably. We also show that a reasonable description of the existing form factors data can be obtained with a very small probability P_{s\bar s}=0.025% for the uuds\bar s component. We further see that the agreement of our prediction with the data for G_A^s at low-q^2 region can be markedly improved by a small admixture of configuration I. It is also found that by not removing CM motion, P_{s\bar s} would be overestimated by about a factor of four in the case when transition dominates over direct currents. Then, we also study the consequence of a recent estimate reached from analyzing the existing data on quark distributions that P_{s\bar s} lies between 2.4-2.9% which would lead to a large size for the five-quark (5q) system, as well as a small bump in both G^s_E+\eta G^s_M and G^s_E in the region of q^2 =< 0.1 GeV^2.Comment: Prepared for The Fifth Asia-Pacific Conference on Few-Body Problems in Physics 2011 in Seoul, South Korea, 22-26 August 201

    Charmless Three-Body Baryonic B Decays

    Full text link
    Motivated by recent data on B-> p pbar K decay, we study various charmless three-body baryonic B decay modes, including Lambda pbar pi, Sigma0 pbar pi, p pbar pi, p pbar Kbar0, in a factorization approach. These modes have rates of order 10^{-6}. There are two mechanisms for the baryon pair production, current-produced and transition. The behavior of decay spectra from these baryon production mechanisms can be understood by using QCD counting rules. Predictions on rates and decay spectra can be checked in the near future.Comment: 26 pages, 9 figures; version to appear in Phys. Rev.

    Crystal structure and magnetic modulation in β−Ce2O2FeSe2

    Get PDF
    We report a combination of X-ray and neutron diffraction studies, Mossbauer spectroscopy and muon spin relaxation (muSR) measurements to probe the structure and magnetic properties of the semiconducting beta-Ce2O2FeSe2 oxychalcogenide. We report a new structural description in space group Pna21 which is consistent with diffraction data and second harmonic generation measurements and reveal an order-disorder transition on one Fe site at TOD ~ 330 K. Susceptibility measurements, Mossbauer and muSR reveal antiferromagnetic ordering below TN = 86 K and more complex short range order above this temperature. 12 K neutron diffraction data reveal a modulated magnetic structure with q = 0.444 bN*

    Single-Band Model for Diluted Magnetic Semiconductors: Dynamical and Transport Properties and Relevance of Clustered States

    Full text link
    Dynamical and transport properties of a simple single-band spin-fermion lattice model for (III,Mn)V diluted magnetic semiconductors (DMS) is here discussed using Monte Carlo simulations. This effort is a continuation of previous work (G. Alvarez, Phys. Rev. Lett. 89, 277202 (2002)) where the static properties of the model were studied. The present results support the view that the relevant regime of J/t (standard notation) is that of intermediate coupling, where carriers are only partially trapped near Mn spins, and locally ordered regions (clusters) are present above the Curie temperature T_C. This conclusion is based on the calculation of the resistivity vs. temperature, that shows a soft metal to insulator transition near T_C, as well on the analysis of the density-of-states and optical conductivity. In addition, in the clustered regime a large magnetoresistance is observed in simulations. Formal analogies between DMS and manganites are also discussed.Comment: Revtex4, 20 figures. References updated, minor changes to figures and tex

    Charmless Two-body Baryonic B Decays

    Full text link
    We study charmless two-body baryonic B decays in a diagramatic approach. Relations on decay amplitudes are obtained. In general there are more than one tree and more than one penguin amplitudes. The number of independent amplitudes can be reduced in the large m_B limit. It leads to more predictive results. Some prominent modes for experimental searches are pointed out.Comment: 15 pages, 2 figures. To appear in Phys. Rev.

    Mass Suppression in Octet Baryon Production

    Get PDF
    There is a striking suppression of the cross section for production of octet baryons in e+ee^+ e ^- annihilation, as the mass of the produced hadron increases. We present a simple parametrization for the fragmentation functions into octet baryons guided by two input models: the SU(3) flavor symmetry part is given by a quark-diquark model, and the baryon mass suppression part is inspired by the string model. We need only eight free parameters to describe the fragmentation functions for all octet baryons. These free parameters are determined by a fit to the experimental data of octet baryon production in e+ee^+ e ^- annihilation. Then we apply the obtained fragmentation functions to predict the cross section of the octet baryon production in charged lepton DIS and find consistency with the available experimental data. Furthermore, baryon production in pppp collisions is suggested to be an ideal domain to check the predicted mass suppression.Comment: 20 pages, 5 figure
    corecore