34,195 research outputs found

    High temperature thermoelectric efficiency in Ba8Ga16Ge30

    Get PDF
    The high thermoelectric figure of merit (zT) of Ba8Ga16Ge30 makes it one of the best n-type materials for thermoelectric power generation. Here, we describe the synthesis and characterization of a Czochralski pulled single crystal of Ba8Ga16Ge30 and polycrystalline disks. Measurements of the electrical conductivity, Hall effect, specific heat, coefficient of thermal expansion, thermal conductivity, and Seebeck coefficient were performed up to 1173 K and compared with literature results. Dilatometry measurements give a coefficient of thermal expansion of 16×10^−6 K^−1 up to 1175 K. The trend in electronic properties with composition is typical of a heavily doped semiconductor. The maximum in the thermoelectric figure of merit is found at 1050 K with a value of 0.8. The correction of zT due to thermal expansion is not significant compared to the measurement uncertainties involved. Comparing the thermoelectric efficiency of segmented materials, the effect of compatibility makes Ba8Ga16Ge30 more efficient than the higher zT n-type materials SiGe or skutterudite CoSb3

    1/S-expansion study of spin waves in a two-dimensional Heisenberg antiferromagnet

    Full text link
    We study the effects of quantum fluctuations on excitation spectra in the two-dimensional Heisenberg antiferromagnet by means of the 1/S expansion. We calculate the spin-wave dispersion and the transverse dynamical structure factor up to the second order of 1/S in comparison with inelastic neutron scattering experiments. The spin-wave energy at momentum (π,0)(\pi,0) is found to be about 2% smaller than that at (π/2,π/2)(\pi/2,\pi/2) due to the second-order correction. In addition, we study the dimensional crossover from two dimensions to one dimension by weakening exchange couplings in one direction. It is found that the second-order correction becomes large with approaching the quasi-one dimensional situation and makes the spin-wave energy approach to the des Cloizeaux-Pearson boundary for S=1/2S=1/2. The transverse dynamical structure factor is also calculated up to the second order of 1/S. It is shown that the intensity of spin-wave peak is strongly reduced while the intensity of three-spin-wave continuum becomes large and exceeds that of the spin-wave peak in the quasi-one dimensional situation.Comment: 20 pages, 6 figures, revised text, added curves in Figs. 3 and 6 for J'/J=0.075 and corrected typos in Table

    Photon-pair generation by non-instantaneous spontaneous four-wave mixing

    Get PDF
    We present a general model, based on a Hamiltonian approach, for the joint quantum state of photon pairs generated through pulsed spontaneous four-wave mixing, including nonlinear phase-modulation and a finite material response time. For the case of a silica fiber, it is found that the pair-production rate depends weakly on the waveguide temperature, due to higher-order Raman scattering events, and more strongly on pump-pair frequency detuning. From the analytical model, a numerical scheme is derived, based on the well-known split-step method. This scheme allows computation of joint states where nontrivial effects are included, such as group-velocity dispersion and Raman scattering. In this work, the numerical model is used to study the impact of the non-instantaneous response on the pre-filtering purity of heralded single photons. We find that for pump pulses shorter than 1 ps, a significant detuning-dependent change in quantum-mechanical purity may be observed in silica

    Universality Class of One-Dimensional Directed Sandpile Models

    Full text link
    A general n-state directed `sandpile' model is introduced. The stationary properties of the n-state model are derived for n < infty, and analytical arguments based on a central limit theorem show that the model belongs to the universality class of the totally asymmetric Oslo model, with a crossover to uncorrelated branching process behavior for small system sizes. Hence, the central limit theorem allows us to identify the existence of a large universality class of one-dimensional directed sandpile models.Comment: 4 pages, 2 figure

    Screening in (2+1)D pure gauge theory at high temperatures

    Get PDF
    We compute heavy quark potentials in pure gauge SU(3)SU(3) at high temperatures in 2+12+1 dimensions and confront them with expectations emerging from perturbative calculations.Comment: 3 pages, latex, 4 figures, uu, Contribution to LATTICE 9

    Engineering spectrally unentangled photon pairs from nonlinear microring resonators through pump manipulation

    Get PDF
    The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states are quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-resonator structures. In this work, we propose a method for generating spectrally unentangled photon pairs from a standard microring resonator. The method utilizes interference between a primary and a delayed secondary pump pulse to effectively increase the pump spectral width inside the cavity. This enables on-chip generation of heralded single photons with state purities in excess of 99 % without spectral filtering.Comment: 5 pages, 5 figure

    Parity violation and the nature of charges

    Get PDF
    The origin of parity violation in physics is still unknown. At the present time, it is introduced in the theory by requiring that the SU(2) subgroup entering the description of interactions involves the left components. In the present contribution, one elaborates upon a suggestion made by Landau that particles and antiparticles could be like "stereo-isomeric" molecules, which would naturally provides parity violation. Particles and antiparticles could thus be combinations of the parity doublets associated with a chiral symmetry realized in the Wigner-Weyl mode. Consequences of such a description and the possible problems it could raise are examined.Comment: 3 pages, contribution to the 3rd international workshop: "From parity violation to hadronic structure and more ..." (PAVI06), to appear in the proceedings (EPJA
    • 

    corecore