2,176 research outputs found

    Geometrical Hyperbolic Systems for General Relativity and Gauge Theories

    Full text link
    The evolution equations of Einstein's theory and of Maxwell's theory---the latter used as a simple model to illustrate the former--- are written in gauge covariant first order symmetric hyperbolic form with only physically natural characteristic directions and speeds for the dynamical variables. Quantities representing gauge degrees of freedom [the spatial shift vector βi(t,xj)\beta^{i}(t,x^{j}) and the spatial scalar potential ϕ(t,xj)\phi(t,x^{j}), respectively] are not among the dynamical variables: the gauge and the physical quantities in the evolution equations are effectively decoupled. For example, the gauge quantities could be obtained as functions of (t,xj)(t,x^{j}) from subsidiary equations that are not part of the evolution equations. Propagation of certain (``radiative'') dynamical variables along the physical light cone is gauge invariant while the remaining dynamical variables are dragged along the axes orthogonal to the spacelike time slices by the propagating variables. We obtain these results by (1)(1) taking a further time derivative of the equation of motion of the canonical momentum, and (2)(2) adding a covariant spatial derivative of the momentum constraints of general relativity (Lagrange multiplier βi\beta^{i}) or of the Gauss's law constraint of electromagnetism (Lagrange multiplier ϕ\phi). General relativity also requires a harmonic time slicing condition or a specific generalization of it that brings in the Hamiltonian constraint when we pass to first order symmetric form. The dynamically propagating gravity fields straightforwardly determine the ``electric'' or ``tidal'' parts of the Riemann tensor.Comment: 24 pages, latex, no figure

    A rigidity theorem for nonvacuum initial data

    Get PDF
    In this note we prove a theorem on non-vacuum initial data for general relativity. The result presents a ``rigidity phenomenon'' for the extrinsic curvature, caused by the non-positive scalar curvature. More precisely, we state that in the case of asymptotically flat non-vacuum initial data if the metric has everywhere non-positive scalar curvature then the extrinsic curvature cannot be compactly supported.Comment: This is an extended and published version: LaTex, 10 pages, no figure

    Motion of Isolated bodies

    Get PDF
    It is shown that sufficiently smooth initial data for the Einstein-dust or the Einstein-Maxwell-dust equations with non-negative density of compact support develop into solutions representing isolated bodies in the sense that the matter field has spatially compact support and is embedded in an exterior vacuum solution

    Geometrical Well Posed Systems for the Einstein Equations

    Get PDF
    We show that, given an arbitrary shift, the lapse NN can be chosen so that the extrinsic curvature KK of the space slices with metric g‾\overline g in arbitrary coordinates of a solution of Einstein's equations satisfies a quasi-linear wave equation. We give a geometric first order symmetric hyperbolic system verified in vacuum by g‾\overline g, KK and NN. We show that one can also obtain a quasi-linear wave equation for KK by requiring NN to satisfy at each time an elliptic equation which fixes the value of the mean extrinsic curvature of the space slices.Comment: 13 pages, latex, no figure

    The Cauchy problem for metric-affine f(R)-gravity in presence of a Klein-Gordon scalar field

    Full text link
    We study the initial value formulation of metric-affine f(R)-gravity in presence of a Klein-Gordon scalar field acting as source of the field equations. Sufficient conditions for the well-posedness of the Cauchy problem are formulated. This result completes the analysis of the same problem already considered for other sources.Comment: 6 page

    Conformal ``thin sandwich'' data for the initial-value problem of general relativity

    Full text link
    The initial-value problem is posed by giving a conformal three-metric on each of two nearby spacelike hypersurfaces, their proper-time separation up to a multiplier to be determined, and the mean (extrinsic) curvature of one slice. The resulting equations have the {\it same} elliptic form as does the one-hypersurface formulation. The metrical roots of this form are revealed by a conformal ``thin sandwich'' viewpoint coupled with the transformation properties of the lapse function.Comment: 7 pages, RevTe

    Constraints and evolution in cosmology

    Get PDF
    We review some old and new results about strict and non strict hyperbolic formulations of the Einstein equations.Comment: To appear in the proceedings of the first Aegean summer school in General Relativity, S. Cotsakis ed. Springer Lecture Notes in Physic

    Einstein and Yang-Mills theories in hyperbolic form without gauge-fixing

    Full text link
    The evolution of physical and gauge degrees of freedom in the Einstein and Yang-Mills theories are separated in a gauge-invariant manner. We show that the equations of motion of these theories can always be written in flux-conservative first-order symmetric hyperbolic form. This dynamical form is ideal for global analysis, analytic approximation methods such as gauge-invariant perturbation theory, and numerical solution.Comment: 12 pages, revtex3.0, no figure
    • …
    corecore