446 research outputs found

    OmniVid: A Generative Framework for Universal Video Understanding

    Full text link
    The core of video understanding tasks, such as recognition, captioning, and tracking, is to automatically detect objects or actions in a video and analyze their temporal evolution. Despite sharing a common goal, different tasks often rely on distinct model architectures and annotation formats. In contrast, natural language processing benefits from a unified output space, i.e., text sequences, which simplifies the training of powerful foundational language models, such as GPT-3, with extensive training corpora. Inspired by this, we seek to unify the output space of video understanding tasks by using languages as labels and additionally introducing time and box tokens. In this way, a variety of video tasks could be formulated as video-grounded token generation. This enables us to address various types of video tasks, including classification (such as action recognition), captioning (covering clip captioning, video question answering, and dense video captioning), and localization tasks (such as visual object tracking) within a fully shared encoder-decoder architecture, following a generative framework. Through comprehensive experiments, we demonstrate such a simple and straightforward idea is quite effective and can achieve state-of-the-art or competitive results on seven video benchmarks, providing a novel perspective for more universal video understanding. Code is available at https://github.com/wangjk666/OmniVid.Comment: Accepted by CVPR 202

    Mesoscopic Transport of Quantum Anomalous Hall Effect in Sub-Micron Size Regime

    Full text link
    The quantum anomalous Hall (QAH) effect has been demonstrated in two-dimensional topological insulator systems incorporated with ferromagnetism. However, a comprehensive understanding of mesoscopic transport in sub-micron QAH devices has yet been established. Here we fabricated miniaturized QAH devices with channel widths down to 600 nm, where the QAH features are still preserved. A back-scattering channel is formed in narrow QAH devices through percolative hopping between 2D compressible puddles. Large resistance fluctuations are observed in narrow devices near the coercive field, which is associated with collective interference between intersecting paths along domain walls when the device geometry is smaller than the phase coherence length LÏ•L_\phi. Through measurement of size-dependent breakdown current, we confirmed that the chiral edge states are confined at the physical boundary with its width on the order of Fermi wavelength.Comment: 7 pages, 5 figure

    A bioinspired bubble removal method in microchannels based on angiosperm xylem embolism repair

    Get PDF
    It is difficult to remove and eliminate bubbles in microchannels in many devices used in various biomedical fields, such as those needed for microfluidic immunoassays, point-of-care testing, and cell biology evaluations. Accumulated bubbles are associated with a number of negative outcomes, including a decrease in device sensitivity, inaccuracy of analysis results, and even functional failure. Xylem conduits of angiosperm have the ability to remove bubbles in obstructed conduits. Inspired by such an embolism repair mechanism, this paper proposes a bioinspired bubble removal method, which exhibits a prominent ability to dissolve bubbles continuously within a large range of flow rates (2 µL/min–850 µL/min) while retaining the stability and continuity of the flow without auxiliary equipment. Such a method also shows significant bubble removal stability in dealing with Newtonian liquids and non-Newtonian fluids, especially with high viscosity (6.76 Pa s) and low velocity (152 nL/min). Such advantages associated with the proposed bioinspired method reveal promising application prospects in macro/microfluidic fields ranging from 3D printing, implantable devices, virus detection, and biomedical fluid processing to microscale reactor operation and beyond

    Numerical simulation analysis of PELE penetrating target plates with different thicknesses

    Get PDF
    PELE (Penetrator with Enhanced Later Effect) is a new type of ammunition, which does not need to be filled with explosives and fuses, but has the function of armor piercing projectile and grenade at the same time. The numerical simulation of a 60 mm diameter PELE penetrating target was investigated. The results show that in the process of the target plate becoming thicker, the transverse effect first increases and then weakens, and the optimal target plate thickness range is 4-6 cm; the properties of the core material have an important influence on the transverse effect of PELE; with the increase of the core radius, the radial velocity of the fragments after PELE penetrating the target first increases, then decreases and then increases, and the optimal core radius is 2-2.6 cm

    Pengaruh Implementasi Kebijakan Tambahan Penghasilan Terhadap Motivasi Kerja Pegawai Dinas Kesehatan Provinsi Sulawesi Tengah

    Full text link
    This study was conducted to determine how much influence the implementation of additional policies on work motivation income civil servants in Central Sulawesi province. This study uses the theory of Van Meter and Van Horn with standard dimensions and policy objectives, resources, communication between the implementing agency, the implementing body characteristics, social, economic and political, disposition / attitude implementers. The method used in the study is survay analytic using cross sectional design of a study to study the dynamics of the correlation between risk factors by means of observation or data collection approach as well. The results showed that the magnitude of the effect of the implementation of additional policies on work motivation of employees earning the provincial health bureau in Central Sulawesi was the degree of correlation moderate to very low-level relations with the interval of the correlation coefficient between 0.172 up to 0.457
    • …
    corecore