153 research outputs found

    Industrial equipment for Powder transportation using piezoelectric “friction control” method

    Get PDF
    This paper presents a new powder transportation system that uses a high frequency flexural stationary wave coupled with a low frequency horizontal displacement of a beam to produce the transport of the powder. The ultrasonic wave is produced with the help of piezoelectric cells glued under the beam and is used to decrease the friction coefficient between the powder and the beam surface

    Modeling of an Ultrasonic Powder Transportation System

    Get PDF
    This paper presents a new powder transportation system that uses a high frequency flexural stationary wave coupled with a low frequency horizontal displacement of a beam to produce the transport of the powder. The ultrasonic wave is produced with the help of piezoelectric cells glued under the beam and is used to decrease the friction coefficient between the powder and the beam surface

    Industrial equipment for Powder transportation using piezoelectric “friction control” method

    Get PDF
    This paper presents a new powder transportation system that uses a high frequency flexural stationary wave coupled with a low frequency horizontal displacement of a beam to produce the transport of the powder. The ultrasonic wave is produced with the help of piezoelectric cells glued under the beam and is used to decrease the friction coefficient between the powder and the beam surface

    Modeling of an Ultrasonic Powder Transportation System

    Get PDF
    This paper presents a new powder transportation system that uses a high frequency flexural stationary wave coupled with a low frequency horizontal displacement of a beam to produce the transport of the powder. The ultrasonic wave is produced with the help of piezoelectric cells glued under the beam and is used to decrease the friction coefficient between the powder and the beam surface

    Modeling of an Ultrasonic Powder Transportation System

    Get PDF
    International audienceThis paper presents a new powder transportation system that uses a high frequency flexural stationary wave coupled with a low frequency horizontal displacement of a beam to produce the transport of the powder. The ultrasonic wave is produced with the help of piezoelectric cells glued under the beam and is used to decrease the friction coefficient between the powder and the beam surface

    Industrial equipment for Powder transportation using piezoelectric “friction control” method

    No full text
    International audienceThis paper presents a new powder transportation system that uses a high frequency flexural stationary wave coupled with a low frequency horizontal displacement of a beam to produce the transport of the powder. The ultrasonic wave is produced with the help of piezoelectric cells glued under the beam and is used to decrease the friction coefficient between the powder and the beam surface

    Measurement of the branching fraction and CPCP asymmetry in B+→J/ψρ+B^{+}\rightarrow J/\psi \rho^{+} decays

    No full text
    International audienceThe branching fraction and direct C ⁣PC\!P asymmetry of the decay B+ ⁣→J/ψρ+{{{B} ^+}} \!\rightarrow {{J /\psi }} {{\rho } ^+} are measured using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7 and 8 TeV, corresponding to a total integrated luminosity of 3   fb −1\,\text{ fb }^{-1} . The following results are obtained: B(B+ ⁣→J/ψρ+)=(3.81+0.25−0.24±0.35)×10−5,AC ⁣P(B+ ⁣→J/ψρ+)=−0.045+0.056−0.057±0.008,\begin{aligned} \mathcal {B}({{B} ^+} \!\rightarrow {{J /\psi }} {{\rho } ^+} )&= (3.81^{+0.25-0.24} \pm 0.35) \times 10^{-5},\\ \mathcal {A}^{{C\!P}} ({{B} ^+} \!\rightarrow {{J /\psi }} {{\rho } ^+} )&= -0.045^{+0.056-0.057} \pm 0.008, \end{aligned} where the first uncertainties are statistical and the second systematic. Both measurements are the most precise to date

    Amplitude analysis of the B(s)0→K∗0K‟∗0B^0_{(s)} \to K^{*0} \overline{K}^{*0} decays and measurement of the branching fraction of the B0→K∗0K‟∗0B^0 \to K^{*0} \overline{K}^{*0} decay

    No full text
    International audienceThe B0→K∗0K‟∗0 {B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} and Bs0→K∗0K‟∗0 {B}_s^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} decays are studied using proton-proton collision data corresponding to an integrated luminosity of 3 fb−1^{−1}. An untagged and timeintegrated amplitude analysis of B_{( s}_{)}^{0}  → (K+^{+}π−^{−})(K−^{−}π+^{+}) decays in two-body invariant mass regions of 150 MeV/c2^{2} around the K∗0^{∗0} mass is performed. A stronger longitudinal polarisation fraction in the B0→K∗0K‟∗0 {B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} decay, fL_{L} = 0.724 ± 0.051 (stat) ± 0.016 (syst), is observed as compared to fL_{L} = 0.240 ± 0.031 (stat) ± 0.025 (syst) in the Bs0→K∗0K‟∗0 {B}_s^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} decay. The ratio of branching fractions of the two decays is measured and used to determine B(B0→K∗0K‟∗0)=(8.0±0.9(stat)±0.4(syst))×10−7 \mathrm{\mathcal{B}}\left({B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0}\right)=\left(8.0\pm 0.9\left(\mathrm{stat}\right)\pm 0.4\left(\mathrm{syst}\right)\right)\times {10}^{-7}

    Measurement of CPCP-violating and mixing-induced observables in Bs0â†’Ï•ÎłB_s^0 \to \phi\gamma decays

    No full text
    International audienceA time-dependent analysis of the Bs0â†’Ï•Îł decay rate is performed to determine the CP -violating observables SÏ•Îł and CÏ•Îł and the mixing-induced observable AÏ•ÎłÎ”. The measurement is based on a sample of pp collision data recorded with the LHCb detector, corresponding to an integrated luminosity of 3  fb-1 at center-of-mass energies of 7 and 8 TeV. The measured values are SÏ•Îł=0.43±0.30±0.11, CÏ•Îł=0.11±0.29±0.11, and AÏ•ÎłÎ”=-0.67-0.41+0.37±0.17, where the first uncertainty is statistical and the second systematic. This is the first measurement of the observables S and C in radiative Bs0 decays. The results are consistent with the standard model predictions

    Measurement of B+B^+, B0B^0 and Λb0\Lambda_b^0 production in p Pbp\mkern 1mu\mathrm{Pb} collisions at sNN=8.16 mTeV\sqrt{s_\mathrm{NN}}=8.16\,{ m TeV}

    No full text
    • 

    corecore