6 research outputs found

    Pyramidal metamaterial absorber for mode damping in microwave resonant structures

    Get PDF
    In many resonant structures the damping of parasitic or higher order modes is indispensable to guarantee a correct and stable performance. This is particularly true in the microwave region in case of cavities or other resonant systems operating in accelerating structures, where the mitigation of spurious resonance effects is mandatory to achieve high quality particle beams. We present the results on the mode suppression in a real pillbox cavity by inserting a properly designed pyramidal metamaterial that acts as light, small volume damper for specific resonances in the range 3-4 GHz, only slightly perturbing other intrinsic modes. Measurements of the cavity response without and with the metamaterial absorber are presented and compared with full wave simulations. Field distribution for the pillbox intrinsic modes under scrutiny is also presented, showing that damping induced by the metamaterial critically depends on its relative position inside the cavity

    THz characterization of a metamaterial-based Spatial Light Modulator

    Get PDF
    The aim of this work is to investigate new classes of artificial materials exhibiting unconventional properties in order to build novel devices operating in the Terahertz regime. We focus on the design, fabrication and characterization of tunable metamaterials with unit cells based on Split Ring Resonators. By incorporation of a nematic liquid crystal in the structure, we observe a frequency shift in the resonant response over 10% in bandwidth and more than 10 dB change in the signal absorption. We discuss how such a hybrid structure can be exploited for the development of a THz spatial light modulator

    Hybrid metamaterial-LC based structures with large tunability range from the microwave to the terahertz region

    Get PDF
    This work aimed to exploit a new class of artificial materials exhibiting unconventional properties, to build new devices for a wild range of applications, starting from the microwave region up to the terahertz regime. We focused on the design and fabrication of metamaterials with unit cells based on split ring resonators SRRs and other type of resonators for the development of tunable negative refractive index metamaterials. The basic idea is to exploit the nematic liquid crystals properties, whose orientation can be magnetically or electrically controlled, to achieve the dynamic frequency modulation of the fabricated metamaterials, in order to build innovative devices for applications from the microwave up to the THz region, where the metal loss can be still maintained at a reasonable level

    A hybrid tunable THz metadevice using a high birefringence liquid crystal

    No full text
    We investigate a hybrid re-configurable three dimensional metamaterial based on liquid crystal as tuning element in order to build novel devices operating in the terahertz range. The proposed metadevice is an array of meta-atoms consisting of split ring resonators having suspended conducting cantilevers in the gap region. Adding a “third dimension” to a standard planar device plays a dual role: (i) enhance the tunability of the overall structure, exploiting the birefringence of the liquid crystal at its best, and (ii) improve the field confinement and therefore the ability of the metadevice to efficiently steer the THz signal. We describe the design, electromagnetic simulation, fabrication and experimental characterization of this new class of tunable metamaterials under an externally applied small voltage. By infiltrating tiny quantities of a nematic liquid crystal in the structure, we induce a frequency shift in the resonant response of the order of 7–8% in terms of bandwidth and about two orders of magnitude change in the signal absorption. We discuss how such a hybrid structure can be exploited for the development of a THz spatial light modulator

    Metamaterial-Based Absorbers for the Reduction of Accelerator Beam-Coupling Impedance

    No full text
    Resistive-wall impedance constitutes a significant percentage of the total beam-coupling impedance budget of an accelerator. A number of different reduction techniques have been proposed during the years depending on the specific applications, ranging from higher order modes damping to solutions entailing high electrical-conductivity coatings of the pipe. This article investigates the use of metamaterial-based absorbers for sensibly reducing or nearly canceling the beam-coupling impedance. We design and fabricate subwavelength 2-D metallic resonant structures based on the split-ring resonator (SRR) geometry that can be employed as mode dampers in accelerating structures. A number of prototypes have been fabricated and measured in a “test model” pillbox cavity. Experimental results, combined with full-wave electromagnetic simulations, prove the efficiency of the SRR-based metamaterials. This article opens up to the possibility of considering metamaterials as a valid alternative to other devices for impedance mitigation in experimental setups commonly operating along a particle beamline, such as accelerating cavities or collimators, and more in general for the development of filters with a large out-of-band signal rejection in specific applications

    Coherent quantum network of superconducting qubits as a highly sensitive detector of microwave photons for searching of galactic axions

    No full text
    We propose a novel approach to detect a low power microwave signal with a frequency of the order of several GHz based on a coherent collective response of quantum states occurring in a superconducting qubits network (SQN). An SQN composes of a large number of superconducting qubits embedded in a low-dissipative superconducting resonator. Our theory predicts that an SQN interacting with the off-resonance microwave radiation, demonstrates the collective alternating current Stark effect that can be measured even in the limit of single photon counting. A design of the layout of three terminals SQN detectors containing 10 flux qubits weakly coupled to a low-dissipative R-resonator and T-transmission line was developed. The samples were fabricated by Al-based technology with Nb resonator. The SQN detector was tested in terms of microwave measurements of scattering parameters and two-tone spectroscopy. A substantial shift of the frequency position of the transmission coefficient drop induced by a second tone pump signal was observed, and this effect clearly manifests a nonlinear multiphoton interaction between the second-tone microwave pump signal and an array of qubits.</p
    corecore