14,323 research outputs found

    Dynamics of the entanglement spectrum in spin chains

    Full text link
    We study the dynamics of the entanglement spectrum, that is the time evolution of the eigenvalues of the reduced density matrices after a bipartition of a one-dimensional spin chain. Starting from the ground state of an initial Hamiltonian, the state of the system is evolved in time with a new Hamiltonian. We consider both instantaneous and quasi adiabatic quenches of the system Hamiltonian across a quantum phase transition. We analyse the Ising model that can be exactly solved and the XXZ for which we employ the time-dependent density matrix renormalisation group algorithm. Our results show once more a connection between the Schmidt gap, i.e. the difference of the two largest eigenvalues of the reduced density matrix and order parameters, in this case the spontaneous magnetisation.Comment: 16 pages, 8 figures, comments are welcome! Version published in JSTAT special issue on "Quantum Entanglement In Condensed Matter Physics

    Entanglement enhanced information transmission over a quantum channel with correlated noise

    Get PDF
    We show that entanglement is a useful resource to enhance the mutual information of the depolarizing channel when the noise on consecutive uses of the channel has some partial correlations. We obtain a threshold in the degree of memory, depending on the shrinking factor of the channel, above which a higher amount of classical information is transmitted with entangled signals

    Constraints on Light WIMP candidates from the Isotropic Diffuse Gamma-Ray Emission

    Full text link
    Motivated by the measurements reported by direct detection experiments, most notably DAMA, CDMS-II, CoGeNT and Xenon10/100, we study further the constraints that might be set on some light dark matter candidates, M_DM ~ few GeV, using the Fermi-LAT data on the isotropic gamma-ray diffuse emission. In particular, we consider a Dirac fermion singlet interacting through a new Z' gauge boson, and a scalar singlet S interacting through the Higgs portal. Both candidates are WIMP (Weakly Interacting Massive Particles), i.e. they have an annihilation cross-section in the pbarn range. Also they may both have a spin-independent elastic cross section on nucleons in the range required by direct detection experiments. Although being generic WIMP candidates, because they have different interactions with Standard Model particles, their phenomenology regarding the isotropic diffuse gamma-ray emission is quite distinct. In the case of the scalar singlet, the one-to-one correspondence between its annihilation cross-section and its spin-independent elastic scattering cross-section permits to express the constraints from the Fermi-LAT data in the direct detection exclusion plot, sigma_n^0--M_DM. Depending on the astrophysics, we argue that it is possible to exclude the singlet scalar dark matter candidate at 95 % CL. The constraints on the Dirac singlet interacting through a Z' are comparatively weaker.Comment: 18 pages, 13 figures, replaced to match with the published versio

    Dark Breathers in Granular Crystals

    Get PDF
    We present a study of the existence, stability and bifurcation structure of families of dark breathers in a one-dimensional uniform chain of spherical beads under static load. A defocus- ing nonlinear Schrodinger equation (NLS) is derived for frequencies that are close to the edge of the phonon band and is used to construct targeted initial conditions for numerical computations. Salient features of the system include the existence of large amplitude solutions that bifurcate with the small amplitude solutions described by the NLS equation, and the presence of a nonlinear instability that, to the best of the authors knowledge, has not been observed in classical Fermi- Pasta-Ulam lattices. Finally, it is also demonstrated that these dark breathers can be detected in a physically realistic way by merely actuating the ends of an initially at rest chain of beads and inducing destructive interference between their signals

    Entanglement control in hybrid optomechanical systems

    Get PDF
    We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity with a mechanical end-mirror and an intracavity Bose-Einstein condensate (BEC). Pulsed laser light (tuned within realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant pumping with the evolution due to the modulated laser light.Comment: Published versio

    Probing magnetic order in ultracold lattice gases

    Full text link
    A forthcoming challenge in ultracold lattice gases is the simulation of quantum magnetism. That involves both the preparation of the lattice atomic gas in the desired spin state and the probing of the state. Here we demonstrate how a probing scheme based on atom-light interfaces gives access to the order parameters of nontrivial quantum magnetic phases, allowing us to characterize univocally strongly correlated magnetic systems produced in ultracold gases. This method, which is also nondemolishing, yields spatially resolved spin correlations and can be applied to bosons or fermions. As a proof of principle, we apply this method to detect the complete phase diagram displayed by a chain of (rotationally invariant) spin-1 bosons.Comment: published versio

    Increasing entanglement through engineered disorder in the random Ising chain

    Full text link
    The ground state entanglement entropy between block of sites in the random Ising chain is studied by means of the Von Neumann entropy. We show that in presence of strong correlations between the disordered couplings and local magnetic fields the entanglement increases and becomes larger than in the ordered case. The different behavior with respect to the uncorrelated disordered model is due to the drastic change of the ground state properties. The same result holds also for the random 3-state quantum Potts model.Comment: 4 pages, published version, a few typos correcte

    Measuring work and heat in ultracold quantum gases

    Get PDF
    We propose a feasible experimental scheme to direct measure heat and work in cold atomic setups. The method is based on a recent proposal which shows that work is a positive operator valued measure (POVM). In the present contribution, we demonstrate that the interaction between the atoms and the light polarisation of a probe laser allows us to implement such POVM. In this way the work done on or extracted from the atoms after a given process is encoded in the light quadrature that can be measured with a standard homodyne detection. The protocol allows one to verify fluctuation theorems and study properties of the non-unitary dynamics of a given thermodynamic process.Comment: Published version in the Focus Issue on "Quantum Thermodynamics
    • …
    corecore