50 research outputs found

    Pathogenesis of scrapie in ARQ/ARQ sheep after subcutaneous infection: effect of lymphadenectomy and immune cell subset changes in relation to prion protein accumulation.

    Get PDF
    Although it is well established that the infectious agent can replicate in the lymphoreticular system (LRS) early after inoculation, the information on pathways or cells involved in the dissemination of scrapie from the point of inoculation is limited. In order to gain a better understanding on these mechanisms 16 ARQ/ARQ, polymorphic or non polymorphic Suffolk or Romney lambs were inoculated subcutaneously with a Suffolk scrapie brain homogenate in the drainage area of the prefemoral lymph node. Fourteen lambs were then either subjected to early or late surgical removal of the prefemoral lymph nodes or not subjected to lymphadectomy and used as positive controls. Eleven animals were culled at a preclinical stage of the disease, and only 5, including 2 positive controls, were killed after reaching clinical end point. Of 5 polymorphic animals killed at preclinical stages of infection, two did not show any evidence of infection, two showed little involvement of LRS tissues and little or none in brain, and one showed widespread LRS involvement but mild PrPd accumulation in the CNS. This was in contrast with the findings in non-polymorphic sheep which, at comparable dpi, showed a complete attack rate with widespread PrPd accumulation in LRS tissues and many of them also in the CNS. The only polymorphic sheep left to develop clinical signs reached enpoint with a more protracted incubation period than the non-polymorphic sheep, but with similar PrPd magnitudes in the LRS or brain. The only change that appears to be related to PrPd accumulation in the LNs is the increase in CD21+ cells indistinctly in polymorphic or polymorphic animals

    Investigating porcine parvoviruses genogroup 2 infection using in situ polymerase chain reaction

    Get PDF
    Abstract Background Porcine parvovirus 2 (PPV2) was detected in swine serum without showing any relationship with disease. The emergence of the virus seemed to be a unique event until other genetically highly similar parvoviruses were identified in China and, later in 2012, the presence of the virus was also described in Europe. PPV2 is widely distributed in pig populations where it is suspected to be involved in respiratory conditions, based on its frequent detection in lung samples. In order to investigate the potential pathogenic involvement of PPV2, 60 dead pigs were examined from two farms. They were necropsied and tested for PPV2 and PCV2 (Porcine circovirus type 2) by PCR; by Brown and Brenn (B&B) staining for bacteria; by immunohistochemistry (IHC) to detect CD3, Swine leukocyte antigen class II DQ (SLAIIDQ), lysozyme, porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza (SIV), Mycoplasma hyopneumoniae (Mhyo); and by in situ hybridization (ISH) to detect ssDNA and dsDNA of PCV2. PPV2 positive samples were subjected to in situ polymerase chain reaction (IS-PCR) including double staining method to detect PPV2 and host cell markers. To calculate statistical difference we used GENMOD or LOGISTIC procedures in Statistical Analysis System (SAS®). Results We found that the PPV2 was localized mostly in lymphocytes in lungs, lymph nodes and liver. Neither CD3 antigen nor lysozyme was expressed by these infected cells. In contrast, low levels of SLAIIDQ were expressed by infected cells, suggesting that PPV2 may have a specific tropism for immature B lymphocytes and/or NK lymphocytes though possibly not T lymphocytes. Conclusion The overall conclusion of this study indicates that PPV2 may contribute to the pathogenesis of pneumonia

    Incidence of Infection in Prnp ARR/ARR Sheep following Experimental Inoculation with or Natural Exposure to Classical Scrapie

    Get PDF
    The prion protein gene (Prnp) is highly influential in determining risk and susceptibility of sheep exposed to classical scrapie. Sheep homozygous for alanine at codon 136 and arginine at codons 154 and 171 (ARR/ARR) of the Prnp gene are historically considered to be highly resistant to classical scrapie, although they form a significant fraction of cases of atypical scrapie. To date, experimental transmission of prions to ARR/ARR sheep has only been achieved with the BSE agent and mostly by the intracerebral route. We summarise here the results of six separate studies, in which 95 sheep of the ARR/ARR genotype were naturally exposed to (n = 18) or experimentally challenged with (n = 77) natural or experimental sources of classical scrapie by the oral, intra-intestinal, subcutaneous or intracerebral routes and allowed to survive for periods of up to 94 months post-infection. Only the intracerebral route resulted in disease and/or amplification of disease associated PrP (PrP(d)), and only in two of 19 sheep that survived for longer than 36 months. Discriminatory immunohistochemistry and Western blot confirmed the scrapie, non-BSE signature of PrP(d) in those two sheep. However, the neuropathological phenotype was different from any other scrapie (classical or atypical) or BSE source previously reported in sheep of any Prnp genotype. These studies confirm the widely held view that ARR/ARR sheep are highly resistant to classical scrapie infection, at least within their commercial lifespan. Moreover, within the constraints of the present studies (only two infected sheep), these results do not support the suggestion that atypical scrapie or BSE are generated by adaptation or mutation of classical scrapie in sheep of resistant ARR/ARR genotype

    Mapping the prion protein distribution in marsupials: insights from comparing opossum with mouse CNS

    Get PDF
    The cellular form of the prion protein (PrP(C)) is a sialoglycoprotein widely expressed in the central nervous system (CNS) of mammalian species during neurodevelopment and in adulthood. The location of the protein in the CNS may play a role in the susceptibility of a species to fatal prion diseases, which are also known as the transmissible spongiform encephalopathies (TSEs). To date, little is known about PrP(C) distribution in marsupial mammals, for which no naturally occurring prion diseases have been reported. To extend our understanding of varying PrP(C) expression profiles in different mammals we carried out a detailed expression analysis of PrP(C) distribution along the neurodevelopment of the metatherian South American short-tailed opossum (Monodelphis domestica). We detected lower levels of PrP(C) in white matter fiber bundles of opossum CNS compared to mouse CNS. This result is consistent with a possible role for PrP(C) in the distinct neurodevelopment and neurocircuitry found in marsupials compared to other mammalian species

    Urinary α1-Antichymotrypsin: A Biomarker of Prion Infection

    Get PDF
    The occurrence of blood-borne prion transmission incidents calls for identification of potential prion carriers. However, current methods for intravital diagnosis of prion disease rely on invasive tissue biopsies and are unsuitable for large-scale screening. Sensitive biomarkers may help meeting this need. Here we scanned the genome for transcripts elevated upon prion infection and encoding secreted proteins. We found that α1-antichymotrypsin (α1-ACT) was highly upregulated in brains of scrapie-infected mice. Furthermore, α1-ACT levels were dramatically increased in urine of patients suffering from sporadic Creutzfeldt-Jakob disease, and increased progressively throughout the disease. Increased α1-ACT excretion was also found in cases of natural prion disease of animals. Therefore measurement of urinary α1-ACT levels may be useful for monitoring the efficacy of therapeutic regimens for prion disease, and possibly also for deferring blood and organ donors that may be at risk of transmitting prion infections

    Correlation between infectivity and disease associated prion protein in the nervous system and selected edible tissues of naturally affected scrapie sheep

    Get PDF
    <div><p>The transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of a pathological form of a host protein known as prion protein (PrP). The validation of abnormal PrP detection techniques is fundamental to allow the use of high-throughput laboratory based tests, avoiding the limitations of bioassays. We used scrapie, a prototype TSE, to examine the relationship between infectivity and laboratory based diagnostic tools. The data may help to optimise strategies to prevent exposure of humans to small ruminant TSE material via the food chain. Abnormal PrP distribution/accumulation was assessed by immunohistochemistry (IHC), Western blot (WB) and ELISA in samples from four animals. In addition, infectivity was detected using a sensitive bank vole bioassay with selected samples from two of the four sheep and protein misfolding cyclic amplification using bank vole brain as substrate (vPMCA) was also carried out in selected samples from one animal. Lymph nodes, oculomotor muscles, sciatic nerve and kidney were positive by IHC, WB and ELISA, although at levels 100–1000 fold lower than the brain, and contained detectable infectivity by bioassay. Tissues not infectious by bioassay were also negative by all laboratory tests including PMCA. Although discrepancies were observed in tissues with very low levels of abnormal PrP, there was an overall good correlation between IHC, WB, ELISA and bioassay results. Most importantly, there was a good correlation between the detection of abnormal PrP in tissues using laboratory tests and the levels of infectivity even when the titre was low. These findings provide useful information for risk modellers and represent a first step toward the validation of laboratory tests used to quantify prion infectivity, which would greatly aid TSE risk assessment policies.</p></div

    Comparative Susceptibility of Sheep of Different Origins, Breeds and PRNP Genotypes to Challenge with Bovine Spongiform Encephalopathy and Scrapie

    Get PDF
    Sheep are natural hosts of the prion disease, scrapie. They are also susceptible to experimental challenge with various scrapie strains and with bovine spongiform encephalopathy (BSE), which affects cattle and has been accidentally transmitted to a range of other species, including man. Incidence and incubation period of clinical disease in sheep following inoculation is controlled by the PRNP gene, which has different alleles defined on the basis of polymorphisms, particularly at codons 136, 154 and 171, although other codons are associated with survival time, and the exact responses of the sheep may be influenced by other breed-related differences. Here we report the results of a long term single study of experimental scrapie and BSE susceptibility of sheep of Cheviot, Poll Dorset and Suffolk breeds, originating from New Zealand and of a wide range of susceptible and resistant PRNP genotypes. Responses were compared with those of sheep from a closed Cheviot flock of UK origin (Roslin Cheviot flock). The unusually long observation period (6-8 years for most, but up to 12 years for others) allows us to draw robust conclusions about rates of survival of animals previously regarded as resistant to infection, particularly PRNP heterozygotes, and is the most comprehensive such study reported to date. BSE inoculation by an intracerebral route produced disease in all genotype groups with differing incubation periods, although M112T and L141F polymorphisms seemed to give some protection. Scrapie isolate SSBP/1, which has the shortest incubation period in sheep with at least one VRQ PRNP allele, also produced disease following sub-cutaneous inoculation in ARQ/ARQ animals of New Zealand origin, but ARQ/ARQ sheep from the Roslin flock survived the challenge. Our results demonstrate that the links between PRNP genotype and clinical prion disease in sheep are much less secure than previously thought, and may break down when, for example, a different breed of sheep is moved into a new flock
    corecore