7 research outputs found
Gastrointestinal Toxicity Prediction Not Influenced by Rectal Contour or Dose-Volume Histogram Definition.
PURPOSE: Rectal dose delivered during prostate radiation therapy is associated with gastrointestinal toxicity. Treatment plans are commonly optimized using rectal dose-volume constraints, often whole-rectum relative-volumes (%). We investigated whether improved rectal contouring, use of absolute-volumes (cc), or rectal truncation might improve toxicity prediction. METHODS AND MATERIALS: Patients from the CHHiP trial (receiving 74 Gy/37 fractions [Fr] vs 60 Gy/20 Fr vs 57 Gy/19 Fr) were included if radiation therapy plans were available (2350/3216 patients), plus toxicity data for relevant analyses (2170/3216 patients). Whole solid rectum relative-volumes (%) dose-volume-histogram (DVH), as submitted by treating center (original contour), was assumed standard-of-care. Three investigational rectal DVHs were generated: (1) reviewed contour per CHHiP protocol; (2) original contour absolute volumes (cc); and (3) truncated original contour (2 versions; ±0 and ±2 cm from planning target volume [PTV]). Dose levels of interest (V30, 40, 50, 60, 70, 74 Gy) in 74 Gy arm were converted by equivalent-dose-in-2 Gy-Fr (EQD2α/β= 3 Gy) for 60 Gy/57 Gy arms. Bootstrapped logistic models predicting late toxicities (frequency G1+/G2+, bleeding G1+/G2+, proctitis G1+/G2+, sphincter control G1+, stricture/ulcer G1+) were compared by area-undercurve (AUC) between standard of care and the 3 investigational rectal definitions. RESULTS: The alternative dose/volume parameters were compared with the original relative-volume (%) DVH of the whole rectal contour, itself fitted as a weak predictor of toxicity (AUC range, 0.57-0.65 across the 8 toxicity measures). There were no significant differences in toxicity prediction for: (1) original versus reviewed rectal contours (AUCs, 0.57-0.66; P = .21-.98); (2) relative- versus absolute-volumes (AUCs, 0.56-0.63; P = .07-.91); and (3) whole-rectum versus truncation at PTV ± 2 cm (AUCs, 0.57-0.65; P = .05-.99) or PTV ± 0 cm (AUCs, 0.57-0.66; P = .27-.98). CONCLUSIONS: We used whole-rectum relative-volume DVH, submitted by the treating center, as the standard-of-care dosimetric predictor for rectal toxicity. There were no statistically significant differences in prediction performance when using central rectal contour review, with the use of absolute-volume dosimetry, or with rectal truncation relative to PTV. Whole-rectum relative-volumes were not improved upon for toxicity prediction and should remain standard-of-care
Genitourinary α/β Ratios in the CHHiP Trial the Fraction Size Sensitivity of Late Genitourinary Toxicity: Analysis of Alpha/Beta (α/β) Ratios in the CHHiP Trial
PURPOSE: Moderately hypofractionated external beam intensity-modulated radiotherapy (IMRT) for prostate cancer is now standard-of-care. Normal tissue toxicity responses to fraction size alteration are non-linear: the linear-quadratic model is a widely-used framework accounting for this, through the α/β ratio. Few α/β ratio estimates exist for human late genitourinary endpoints; here we provide estimates derived from a hypofractionation trial. METHODS AND MATERIALS: The XXXXXX trial randomised 3216 men with localised prostate cancer 1:1:1 between conventionally fractionated IMRT (74Gy/37 fractions (Fr)) and two moderately hypofractionated regimens (60Gy/20Fr & 57Gy/19Fr). Radiotherapy plan and suitable follow-up assessment was available for 2206 men. Three prospectively assessed clinician-reported toxicity scales were amalgamated for common genitourinary endpoints: Dysuria, Haematuria, Incontinence, Reduced flow/Stricture, Urine Frequency. Per endpoint, only patients with baseline zero toxicity were included. Three models for endpoint grade ≥1 (G1+) and G2+ toxicity were fitted: Lyman Kutcher-Burman (LKB) without equivalent dose in 2Gy/Fr (EQD2) correction [LKB-NoEQD2]; LKB with EQD2-correction [LKB-EQD2]; LKB-EQD2 with dose-modifying-factor (DMF) inclusion [LKB-EQD2-DMF]. DMFs were: age, diabetes, hypertension, pelvic surgery, prior transurethral resection of prostate (TURP), overall treatment time and acute genitourinary toxicity (G2+). Bootstrapping generated 95% confidence intervals and unbiased performance estimates. Models were compared by likelihood ratio test. RESULTS: The LKB-EQD2 model significantly improved performance over LKB-NoEQD2 for just three endpoints: Dysuria G1+ (α/β=2.0 Gy, 95%CI 1.2-3.2Gy), Haematuria G1+ (α/β=0.9 Gy, 95%CI 0.1-2.2Gy) and Haematuria G2+ (α/β=0.6Gy, 95%CI 0.1-1.7Gy). For these three endpoints, further incorporation of two DMFs improved on LKB-EQD2: acute genitourinary toxicity and Prior TURP (Haematuria G1+ only), but α/β ratio estimates remained stable. CONCLUSIONS: Inclusion of EQD2-correction significantly improved model fitting for Dysuria and Haematuria endpoints, where fitted α/β ratio estimates were low: 0.6-2 Gy. This suggests therapeutic gain for clinician-reported GU toxicity, through hypofractionation, might be lower than expected by typical late α/β ratio assumptions of 3-5 Gy
Estimates of Alpha/Beta (α/β) Ratios for Individual Late Rectal Toxicity Endpoints: An Analysis of the CHHiP trial.
Purpose Changes in fraction size of external beam radiotherapy (EBRT) exert non-linear impacts on subsequent toxicity. Commonly described by the linear-quadratic model, fraction size sensitivity of normal tissues is expressed by the α/β ratio. Here we study individual α/β ratios for different late rectal side effects after prostate EBRT.Methods and materials The XXXXXXX trial (XX-REGISTRATION-NUMBER-XX) randomised men with non-metastatic prostate cancer 1:1:1 to 74Gy/37 fractions (Fr), 60Gy/20Fr or 57Gy/19Fr. Patients included had full dosimetric data and zero baseline toxicity. Toxicity scales were amalgamated to 6 bowel endpoints: bleeding, diarrhoea, pain, proctitis, sphincter control and stricture. Lyman-Kutcher-Burman models +/- equivalent dose in 2 Gy/fraction correction were log-likelihood fitted by endpoint, estimating α/β ratios. α/β ratio estimate sensitivity was assessed by sequential inclusion of dose modifying factors (DMFs): age, diabetes, hypertension, inflammatory bowel or diverticular disease (IBD/diverticular), and haemorrhoids. 95% confidence intervals (95% CIs) were bootstrapped. Likelihood ratio testing of 632 estimator log-likelihoods compared models.Results Late rectal α/β ratio estimates (without DMF) ranged from: bleeding G1+ α/β = 1.6 Gy (95% CI 0.9-2.5 Gy), up to sphincter control G1+ α/β = 3.1 Gy (1.4-9.1 Gy). Bowel pain modelled poorly (α/β 3.6 Gy, 95% CI 0.0 - 840 Gy). Inclusion of IBD/diverticular disease as a DMF significantly improved fits for stool frequency G2+ (p=0.00041) & proctitis G1+ (p=0.00046). However, the α/β ratios were similar in these no-DMF vs DMF models for both stool frequency G2+ (α/β 2.7 Gy vs 2.5 Gy) and proctitis G1+ (α/β 2.7 Gy vs 2.6 Gy). Frequency-weighted averaging of endpoint α/β ratios produced: G1+ α/β ratio=2.4 Gy; G2+ α/β ratio=2.3 Gy.Conclusions We estimated α/β ratios for several common late rectal radiotherapy side effects. When comparing dose-fractionation schedules we suggest using late rectal α/β ratio ≤ 3 Gy
The Fraction Size Sensitivity of Late Genitourinary Toxicity: Analysis of Alpha/Beta (α/β) Ratios in the CHHiP Trial
Purpose: Moderately hypofractionated external beam intensity modulated radiation therapy (RT) for prostate cancer is now standard-of-care. Normal tissue toxicity responses to fraction size alteration are nonlinear: the linear-quadratic model is a widely used framework accounting for this, through the α/β ratio. Few α/β ratio estimates exist for human late genitourinary endpoints; here we provide estimates derived from a hypofractionation trial. Methods and Materials: The CHHiP trial randomized 3216 men with localized prostate cancer 1:1:1 between conventionally fractionated intensity modulated RT (74 Gy/37 fractions (Fr)) and 2 moderately hypofractionated regimens (60 Gy/20 Fr and 57 Gy/19 Fr). RT plan and suitable follow-up assessment was available for 2206 men. Three prospectively assessed clinician-reported toxicity scales were amalgamated for common genitourinary endpoints: dysuria, hematuria, incontinence, reduced flow/stricture, and urine frequency. Per endpoint, only patients with baseline zero toxicity were included. Three models for endpoint grade ≥1 (G1+) and G2+ toxicity were fitted: Lyman Kutcher-Burman (LKB) without equivalent dose in 2 Gy/Fr (EQD2) correction [LKB-NoEQD2]; LKB with EQD2-correction [LKB-EQD2]; LKB-EQD2 with dose-modifying-factor (DMF) inclusion [LKB-EQD2-DMF]. DMFs were age, diabetes, hypertension, pelvic surgery, prior transurethral resection of prostate (TURP), overall treatment time and acute genitourinary toxicity (G2+). Bootstrapping generated 95% confidence intervals and unbiased performance estimates. Models were compared by likelihood ratio test. Results: The LKB-EQD2 model significantly improved performance over LKB-NoEQD2 for just 3 endpoints: dysuria G1+ (α/β = 2.0 Gy; 95% confidence interval [CI], 1.2-3.2 Gy), hematuria G1+ (α/β = 0.9 Gy; 95% CI, 0.1-2.2 Gy) and hematuria G2+ (α/β = 0.6 Gy; 95% CI, 0.1-1.7 Gy). For these 3 endpoints, further incorporation of 2 DMFs improved on LKB-EQD2: acute genitourinary toxicity and prior TURP (hematuria G1+ only), but α/β ratio estimates remained stable. Conclusions: Inclusion of EQD2-correction significantly improved model fitting for dysuria and hematuria endpoints, where fitted α/β ratio estimates were low: 0.6 to 2 Gy. This suggests therapeutic gain for clinician-reported GU toxicity, through hypofractionation, might be lower than expected by typical late α/β ratio assumptions of 3 to 5 Gy.ISSN:0360-3016ISSN:1879-355