28 research outputs found

    Association between transcatheter aortic valve replacement and subsequent infective endocarditis and in-hospital death

    Get PDF
    Importance Limited data exist on clinical characteristics and outcomes of patients who had infective endocarditis after undergoing transcatheter aortic valve replacement (TAVR). Objective To determine the associated factors, clinical characteristics, and outcomes of patients who had infective endocarditis after TAVR. Design, Setting, and Participants The Infectious Endocarditis after TAVR International Registry included patients with definite infective endocarditis after TAVR from 47 centers from Europe, North America, and South America between June 2005 and October 2015. EXPOSURE Transcatheter aortic valve replacement for incidence of infective endocarditis and infective endocarditis for in-hospital mortality. MAIN OUTCOMES AND MEASURES Infective endocarditis and in-hospital mortality after infective endocarditis. Results A total of 250 cases of infective endocarditis occurred in 20 006 patients after TAVR (incidence, 1.1% per person-year; 95% CI, 1.1%-1.4%; median age, 80 years; 64% men). Median time from TAVR to infective endocarditis was 5.3 months (interquartile range [IQR], 1.5-13.4 months). The characteristics associated with higher risk of progressing to infective endocarditis after TAVR was younger age (78.9 years vs 81.8 years; hazard ratio [HR], 0.97 per year; 95% CI, 0.94-0.99), male sex (62.0% vs 49.7%; HR, 1.69; 95% CI, 1.13-2.52), diabetes mellitus (41.7% vs 30.0%; HR, 1.52; 95% CI, 1.02-2.29), and moderate to severe aortic regurgitation (22.4% vs 14.7%; HR, 2.05; 95% CI, 1.28-3.28). Health care?associated infective endocarditis was present in 52.8% (95% CI, 46.6%-59.0%) of patients. Enterococci species and Staphylococcus aureus were the most frequently isolated microorganisms (24.6%; 95% CI, 19.1%-30.1% and 23.3%; 95% CI, 17.9%-28.7%, respectively). The in-hospital mortality rate was 36% (95% CI, 30.0%-41.9%; 90 deaths; 160 survivors), and surgery was performed in 14.8% (95% CI, 10.4%-19.2%) of patients during the infective endocarditis episode. In-hospital mortality was associated with a higher logistic EuroSCORE (23.1% vs 18.6%; odds ratio [OR], 1.03 per 1% increase; 95% CI, 1.00-1.05), heart failure (59.3% vs 23.7%; OR, 3.36; 95% CI, 1.74-6.45), and acute kidney injury (67.4% vs 31.6%; OR, 2.70; 95% CI, 1.42-5.11). The 2-year mortality rate was 66.7% (95% CI, 59.0%-74.2%; 132 deaths; 115 survivors). Conclusions and Relevance Among patients undergoing TAVR, younger age, male sex, history of diabetes mellitus, and moderate to severe residual aortic regurgitation were significantly associated with an increased risk of infective endocarditis. Patients who developed endocarditis had high rates of in-hospital mortality and 2-year mortality

    Severe Asthma Standard-of-Care Background Medication Reduction With Benralizumab: ANDHI in Practice Substudy

    Full text link
    peer reviewedBackground: The phase IIIb, randomized, parallel-group, placebo-controlled ANDHI double-blind (DB) study extended understanding of the efficacy of benralizumab for patients with severe eosinophilic asthma. Patients from ANDHI DB could join the 56-week ANDHI in Practice (IP) single-arm, open-label extension substudy. Objective: Assess potential for standard-of-care background medication reductions while maintaining asthma control with benralizumab. Methods: Following ANDHI DB completion, eligible adults were enrolled in ANDHI IP. After an 8-week run-in with benralizumab, there were 5 visits to potentially reduce background asthma medications for patients achieving and maintaining protocol-defined asthma control with benralizumab. Main outcome measures for non–oral corticosteroid (OCS)-dependent patients were the proportions with at least 1 background medication reduction (ie, lower inhaled corticosteroid dose, background medication discontinuation) and the number of adapted Global Initiative for Asthma (GINA) step reductions at end of treatment (EOT). Main outcomes for OCS-dependent patients were reductions in daily OCS dosage and proportion achieving OCS dosage of 5 mg or lower at EOT. Results: For non–OCS-dependent patients, 53.3% (n = 208 of 390) achieved at least 1 background medication reduction, increasing to 72.6% (n = 130 of 179) for patients who maintained protocol-defined asthma control at EOT. A total of 41.9% (n = 163 of 389) achieved at least 1 adapted GINA step reduction, increasing to 61.8% (n = 110 of 178) for patients with protocol-defined EOT asthma control. At ANDHI IP baseline, OCS dosages were 5 mg or lower for 40.4% (n = 40 of 99) of OCS-dependent patients. Of OCS-dependent patients, 50.5% (n = 50 of 99) eliminated OCS and 74.7% (n = 74 of 99) achieved dosages of 5 mg or lower at EOT. Conclusions: These findings demonstrate benralizumab's ability to improve asthma control, thereby allowing background medication reduction. © 202

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Human milk lactose, insulin, and glucose relative to infant body composition during exclusive breastfeeding

    Get PDF
    Human milk (HM) components may influence infant growth and development. This study aimed to investigate relationships between infant body composition (BC) and HM lactose, insulin, and glucose (concentrations and calculated daily intakes (CDI)) as well as 24-h milk intake and maternal BC at 3 months postpartum. HM samples were collected at 2 months postpartum. Infant and maternal BC was assessed with bioimpedance spectroscopy. Statistical analysis used linear regression accounting for infant birth weight. 24-h milk intake and CDI of lactose were positively associated with infant anthropometry, lean body mass and adiposity. Higher maternal BC measures were associated with lower infant anthropometry, z-scores, lean body mass, and adiposity. Maternal characteristics including BC and age were associated with concentrations and CDI of HM components, and 24-h milk intake. In conclusion, 24-h intake of HM and lactose as well as maternal adiposity are related to development of infant BC

    Impact of expression mode and timing of sample collection, relative to milk ejection, on human milk bacterial DNA profiles

    No full text
    Aim To investigate the impact of expression mode: electric breast pump or hand expression, and timing of sample collection: pre‐ and post‐milk ejection on human milk (HM) bacterial DNA profiles. Methods and results Three HM samples from the same breast were collected from 30 breastfeeding mothers: a pre‐milk ejection pump‐expressed sample (pre‐pump), a post‐milk ejection pump‐expressed sample (post‐pump) and a post‐milk ejection hand‐expressed sample (post‐hand). Full‐length 16S rRNA gene sequencing was used to assess milk bacterial DNA profiles. Bacterial profiles did not differ significantly based on mode of expression nor timing of sample collection. No significant differences were detected in the relative abundance of any OTUs based on expression condition (pre‐pump/ post‐pump and post‐pump/post‐hand) with univariate linear mixed‐effects regression analyses (all P‐values > 0·01; α = 0·01). Similarly, no difference in richness was observed between sample types (number of observed OTUs: post‐pump/post‐hand P = 0·13; pre‐pump/post‐pump P = 0. 45). Conclusion Bacterial DNA profiles of HM did not differ according to either expression method or timing of sample collection. Significance and Impact of the Study Hand or pump expression can be utilized to collect samples for microbiome studies. This has implications for the design of future HM microbiome studies
    corecore