250 research outputs found

    Levy Anomalous Diffusion and Fractional Fokker--Planck Equation

    Full text link
    We demonstrate that the Fokker-Planck equation can be generalized into a 'Fractional Fokker-Planck' equation, i.e. an equation which includes fractional space differentiations, in order to encompass the wide class of anomalous diffusions due to a Levy stable stochastic forcing. A precise determination of this equation is obtained by substituting a Levy stable source to the classical gaussian one in the Langevin equation. This yields not only the anomalous diffusion coefficient, but a non trivial fractional operator which corresponds to the possible asymmetry of the Levy stable source. Both of them cannot be obtained by scaling arguments. The (mono-) scaling behaviors of the Fractional Fokker-Planck equation and of its solutions are analysed and a generalization of the Einstein relation for the anomalous diffusion coefficient is obtained. This generalization yields a straightforward physical interpretation of the parameters of Levy stable distributions. Furthermore, with the help of important examples, we show the applicability of the Fractional Fokker-Planck equation in physics.Comment: 22 pages; To Appear in Physica

    Cooling down the world oceans and the earth by enhancing the North Atlantic Ocean current

    Get PDF
    The world is going through intensive changes due to global warming. It is well known that the reduction in ice cover in the Arctic Ocean further contributes to increasing the atmospheric Arctic temperature due to the reduction of the albedo effect and increase in heat absorbed by the ocean’s surface. The Arctic ice cover also works like an insulation sheet, keeping the heat in the ocean from dissipating into the cold Arctic atmosphere. Increasing the salinity of the Arctic Ocean surface would allow the warmer and less salty North Atlantic Ocean current to flow on the surface of the Arctic Ocean considerably increasing the temperature of the Arctic atmosphere and release the ocean heat trapped under the ice. This paper argues that if the North Atlantic Ocean current could maintain the Arctic Ocean ice-free during the winter, the longwave radiation heat loss into space would be larger than the increase in heat absorption due to the albedo effect. This paper presents details of the fundamentals of the Arctic Ocean circulation and presents three possible approaches for increasing the salinity of the surface water of the Arctic Ocean. It then discusses that increasing the salinity of the Arctic Ocean would warm the atmosphere of the Arctic region, but cool down the oceans and possibly the Earth. However, it might take thousands of years for the effects of cooling the oceans to cool the global average atmospheric temperature

    Gravitational stability and dynamical overheating of stellar disks of galaxies

    Full text link
    We use the marginal stability condition for galactic disks and the stellar velocity dispersion data published by different authors to place upper limits on the disk local surface density at two radial scalelengths R=2hR=2h. Extrapolating these estimates, we constrain the total mass of the disks and compare these estimates to those based on the photometry and color of stellar populations. The comparison reveals that the stellar disks of most of spiral galaxies in our sample cannot be substantially overheated and are therefore unlikely to have experienced a significant merging event in their history. The same conclusion applies to some, but not all of the S0 galaxies we consider. However, a substantial part of the early type galaxies do show the stellar velocity dispersion well in excess of the gravitational stability threshold suggesting a major merger event in the past. We find dynamically overheated disks among both seemingly isolated galaxies and those forming pairs. The ratio of the marginal stability disk mass estimate to the total galaxy mass within four radial scalelengths remains within a range of 0.4---0.8. We see no evidence for a noticeable running of this ratio with either the morphological type or color index.Comment: 25 pages, 5 figures, accepted to Astronomy Letter

    The European Marine Observation and Data Network (EMODnet): Visions and roles of the gateway to marine data in Europe

    Get PDF
    Marine data are needed for many purposes: for acquiring a better scientific understanding of the marine environment, but also, increasingly, as marine knowledge for decision making as well as developing products and services supporting economic growth. Data must be of sufficient quality to meet the specific users' needs. It must also be accessible in a timely manner. And yet, despite being critical, this timely access to known-quality data proves challenging. Europe's marine data have traditionally been collected by a myriad of entities with the result that much of our data are scattered throughout unconnected databases and repositories. Even when data are available, they are often not compatible, making the sharing of the information and data aggregation particularly challenging. In this paper, we present how the European Marine Observation and Data network (EMODnet) has developed over the last decade to tackle these issues. Today, EMODnet is comprised of more than 150 organizations which gather marine data, metadata, and data products and make them more easily accessible for a wider range of users. EMODnet currently consists of seven sub-portals: bathymetry, geology, physics, chemistry, biology, seabed habitats, and human activities. In addition, Sea-basin Checkpoints have been established to assess the observation capacity in the North Sea, Mediterranean, Atlantic, Baltic, Artic, and Black Sea. The Checkpoints identify whether the observation infrastructure in Europe meets the needs of users by undertaking a number of challenges. To complement this, a Data Ingestion Service has been set up to tackle the problem of the wealth of marine data that remain unavailable, by reaching out to data holders, explaining the benefits of sharing their data and offering a support service to assist them in releasing their data and making them available through EMODnet. The EMODnet Central Portal (www.emodnet.eu) provides a single point of access to these services, which are free to access and use. The strategic vision of EMODnet in the next decade is also presented, together with key focal areas toward a more user-oriented service, including EMODnet for business, internationalization for global users, and stakeholder engagement to connect the diverse communities across the marine knowledge value chain

    Experimental study of negative photoconductivity in n-PbTe(Ga) epitaxial films

    Full text link
    We report on low-temperature photoconductivity (PC) in n-PbTe(Ga) epitaxial films prepared by the hot-wall technique on -BaF_2 substrates. Variation of the substrate temperature allowed us to change the resistivity of the films from 10^8 down to 10_{-2} Ohm x cm at 4.2 K. The resistivity reduction is associated with a slight excess of Ga concentration, disturbing the Fermi level pinning within the energy gap of n-PbTe(Ga). PC has been measured under continuous and pulse illumination in the temperature range 4.2-300 K. For films of low resistivity, the photoresponse is composed of negative and positive parts. Recombination processes for both effects are characterized by nonexponential kinetics depending on the illumination pulse duration and intensity. Analysis of the PC transient proves that the negative photoconductivity cannot be explained in terms of nonequilibrium charge carriers spatial separation of due to band modulation. Experimental results are interpreted assuming the mixed valence of Ga in lead telluride and the formation of centers with a negative correlation energy. Specifics of the PC process is determined by the energy levels attributed to donor Ga III, acceptor Ga I, and neutral Ga II states with respect to the crystal surrounding. The energy level corresponding to the metastable state Ga II is supposed to occur above the conduction band bottom, providing fast recombination rates for the negative PC. The superposition of negative and positive PC is considered to be dependent on the ratio of the densities of states corresponding to the donor and acceptor impurity centers.Comment: 7 pages, 4 figure
    • 

    corecore