73 research outputs found

    Effects of Saccharomyces cerevisiae, medium and forage type and their interactions on in vitro ruminal fermentation

    Get PDF
    The objective of this study was to investigate the effects of a live yeast, Saccharomyces cerevisiae CNCM I-1077, at four doses (0, 1×105, 1×106 and 1 × 107 cfu/mL) according to the reducing medium used [Goering-Van Soest (GV), McDougall (MD) or Kansas State (KS)] on in vitro ruminal neutral detergent fibre digestibility (NDFd), rate of digestion of NDF (kd), organic matter digestibility (OMd), dry matter digestibility (DMd), pH as well as volatile fatty acids (VFA) concentration, using two forages (oat hay and wheat straw) with differing chemical composition. The maximum in vitro NDFd, DMd, OMd as well as kd were obtained with dose 1 × 106 cfu/mL, although differences between doses were not always significant. The pH estimates were the lowest with the 1 × 107 cfu/mL dose, but the differences were not all significant; however, 1 × 107 cfu/mL corresponded to significantly lower pH estimates compared to the control and 1×105 (6.51 vs. 6.60 and 6.59, respectively). The decrease in pH was accompanied by an increase in VFA concentrations as the yeast dose increased. The KS medium resulted in the lowest digestibility estimates, pH estimates as well as kd, regardless of yeast dose. The 1 × 106 cfu/mL was the better performing yeast dose in vitro resulting in higher digestibility estimates which indicates the yeasts ability to stimulate the microorganisms within the rumen by beneficially modifying rumen environment, thus promoting microbiota activity. The MD and GV media provide better environments for fermentation than the KS medium, resulting in higher in vitro NDFd, DMd, OMd, pH estimates as well as rate of NDF digestion. The MD and GV are also the media that resulted in more consistent results when analysing the effects of the live yeast. Our data suggest that the in vitro conditions have to be carefully chosen to be able to demonstrate rumen fermentation shifts with the use of live microbial additives

    The Response of the Honey Bee Gut Microbiota to Nosema ceranae Is Modulated by the Probiotic Pediococcus acidilactici and the Neonicotinoid Thiamethoxam.

    Get PDF
    The honey bee Apis mellifera is exposed to a variety of biotic and abiotic stressors, such as the highly prevalent microsporidian parasite Nosema (Vairimorpha) ceranae and neonicotinoid insecticides. Both can affect honey bee physiology and microbial gut communities, eventually reducing its lifespan. They can also have a combined effect on the insect's survival. The use of bacterial probiotics has been proposed to improve honey bee health, but their beneficial effect remains an open question. In the present study, western honey bees were experimentally infected with N. ceranae spores, chronically exposed to the neonicotinoid thiamethoxam, and/or supplied daily with the homofermentative bacterium Pediococcus acidilactici MA18/5M thought to improve the honey bees' tolerance to the parasite. Deep shotgun metagenomic sequencing allowed the response of the gut microbiota to be investigated with a taxonomic resolution at the species level. All treatments induced significant changes in honey bee gut bacterial communities. Nosema ceranae infection increased the abundance of Proteus mirabilis, Frischella perrara, and Gilliamella apicola and reduced the abundance of Bifidobacterium asteroides, Fructobacillus fructosus, and Lactobacillus spp. Supplementation with P. acidilactici overturned some of these alterations, bringing back the abundance of some altered species close to the relative abundance found in the controls. Surprisingly, the exposure to thiamethoxam also restored the relative abundance of some species modulated by N. ceranae. This study shows that stressors and probiotics may have an antagonistic impact on honey bee gut bacterial communities and that P. acidilactici may have a protective effect against the dysbiosis induced by an infection with N. ceranae

    Effects of Saccharomyces cerevisiae, medium and forage type and their interactions on in vitro ruminal fermentation

    Get PDF
    CITATION: Russouw, A. et al. 2020. Effects of Saccharomyces cerevisiae, medium and forage type and their interactions on in vitro ruminal fermentation. Heliyon, 6(9):e05028, doi:10.1016/j.heliyon.2020.e05028.The original publication is available at https://www.sciencedirect.comThe objective of this study was to investigate the effects of a live yeast, Saccharomyces cerevisiae CNCM I-1077, at four doses (0, 1×105, 1×106 and 1 × 107 cfu/mL) according to the reducing medium used [Goering-Van Soest (GV), McDougall (MD) or Kansas State (KS)] on in vitro ruminal neutral detergent fibre digestibility (NDFd), rate of digestion of NDF (kd), organic matter digestibility (OMd), dry matter digestibility (DMd), pH as well as volatile fatty acids (VFA) concentration, using two forages (oat hay and wheat straw) with differing chemical composition. The maximum in vitro NDFd, DMd, OMd as well as kd were obtained with dose 1 × 106 cfu/mL, although differences between doses were not always significant. The pH estimates were the lowest with the 1 × 107 cfu/mL dose, but the differences were not all significant; however, 1 × 107 cfu/mL corresponded to significantly lower pH estimates compared to the control and 1×105 (6.51 vs. 6.60 and 6.59, respectively). The decrease in pH was accompanied by an increase in VFA concentrations as the yeast dose increased. The KS medium resulted in the lowest digestibility estimates, pH estimates as well as kd, regardless of yeast dose. The 1 × 106 cfu/mL was the better performing yeast dose in vitro resulting in higher digestibility estimates which indicates the yeasts ability to stimulate the microorganisms within the rumen by beneficially modifying rumen environment, thus promoting microbiota activity. The MD and GV media provide better environments for fermentation than the KS medium, resulting in higher in vitro NDFd, DMd, OMd, pH estimates as well as rate of NDF digestion. The MD and GV are also the media that resulted in more consistent results when analysing the effects of the live yeast. Our data suggest that the in vitro conditions have to be carefully chosen to be able to demonstrate rumen fermentation shifts with the use of live microbial additives.Danstar Ferment Ag.Publisher's versio

    Methane and nitrous oxide emissions from Canadian dairy farms and mitigation options: An updated review

    Full text link
    This review examined methane (CH4) and nitrous oxide (N2O) mitigation strategies for Canadian dairy farms. The primary focus was research conducted in Canada and cold climatic regions with similar dairy systems. Meta-analyses were conducted to assess the impact of a given strategy when sufficient data were available. Results indicated that options to reduce enteric CH4 from dairy cows were increasing the dietary starch content and dietary lipid supplementation. Replacing barley or alfalfa silage with corn silage with higher starch content decreased enteric CH4 per unit of milk by 6%. Increasing dietary lipids from 3% to 6% of dry matter (DM) reduced enteric CH4 yield by 9%. Strategies such as nitrate supplementation and 3-nitrooxypropanol additive indicated potential for reducing enteric CH4 by about 30% but require extensive research on toxicology and consumer acceptance. Strategies to reduce emissions from manure are anaerobic digestion, composting, solid-liquid separation, covering slurry storage and flaring CH4, and reducing methanogen inoculum by complete emptying of slurry storage at spring application. These strategies have potential to reduce emissions from manure by up to 50%. An integrated approach of combining strategies through diet and manure management is necessary for significant GHG mitigation and lowering carbon footprint of milk produced in Canada
    corecore