303 research outputs found

    A Crevice on the Crane Beach: Finite-Degree Predicates

    Full text link
    First-order logic (FO) over words is shown to be equiexpressive with FO equipped with a restricted set of numerical predicates, namely the order, a binary predicate MSB0_0, and the finite-degree predicates: FO[Arb] = FO[<, MSB0_0, Fin]. The Crane Beach Property (CBP), introduced more than a decade ago, is true of a logic if all the expressible languages admitting a neutral letter are regular. Although it is known that FO[Arb] does not have the CBP, it is shown here that the (strong form of the) CBP holds for both FO[<, Fin] and FO[<, MSB0_0]. Thus FO[<, Fin] exhibits a form of locality and the CBP, and can still express a wide variety of languages, while being one simple predicate away from the expressive power of FO[Arb]. The counting ability of FO[<, Fin] is studied as an application.Comment: Submitte

    Continuity of Functional Transducers: A Profinite Study of Rational Functions

    Get PDF
    A word-to-word function is continuous for a class of languages~V\mathcal{V} if its inverse maps V\mathcal{V}_languages to~V\mathcal{V}. This notion provides a basis for an algebraic study of transducers, and was integral to the characterization of the sequential transducers computable in some circuit complexity classes. Here, we report on the decidability of continuity for functional transducers and some standard classes of regular languages. To this end, we develop a robust theory rooted in the standard profinite analysis of regular languages. Since previous algebraic studies of transducers have focused on the sole structure of the underlying input automaton, we also compare the two algebraic approaches. We focus on two questions: When are the automaton structure and the continuity properties related, and when does continuity propagate to superclasses

    Positive semi-definite embedding for dimensionality reduction and out-of-sample extensions

    Full text link
    In machine learning or statistics, it is often desirable to reduce the dimensionality of a sample of data points in a high dimensional space Rd\mathbb{R}^d. This paper introduces a dimensionality reduction method where the embedding coordinates are the eigenvectors of a positive semi-definite kernel obtained as the solution of an infinite dimensional analogue of a semi-definite program. This embedding is adaptive and non-linear. A main feature of our approach is the existence of a non-linear out-of-sample extension formula of the embedding coordinates, called a projected Nystr\"om approximation. This extrapolation formula yields an extension of the kernel matrix to a data-dependent Mercer kernel function. Our empirical results indicate that this embedding method is more robust with respect to the influence of outliers, compared with a spectral embedding method.Comment: 16 pages, 5 figures. Improved presentatio

    Neural coding of sound envelope in reverberant environments

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 153-159).Speech reception depends critically on temporal modulations in the amplitude envelope of the speech signal. Reverberation encountered in everyday environments can substantially attenuate these modulations. To assess the effect of reverberation on the neural coding of amplitude envelope, we recorded from single units in the inferior colliculus (IC) of unanesthetized rabbit using sinusoidally amplitude modulated broadband noise stimuli presented in simulated anechoic and reverberant environments. Consistent with the attenuation of amplitude modulation (AM) in the stimulus, both rate and temporal coding of AM were degraded in IC neurons. However, in most neurons, the degradation in temporal coding was smaller than the degradation in the stimulus. In many neurons, this compensation could be accounted for by the modulation input-output function (MIOF), which describes the nonlinear transformation of modulation depth from the sound stimulus into the neural response. However, in a subset of neurons, the MIOF underestimated the strength of temporal coding, suggesting that reverberant stimuli may have a coding advantage over anechoic stimuli with the same modulation depth. Additional experiments suggest that interaural envelope disparities and interaural decorrelation introduced by reverberation may partly explain this coding advantage. In another set of experiments, we tested the hypothesis that temporal coding of AM is not static, but depends dynamically on the modulation depth statistics of preceding stimulation. In a subset of neurons, preceding stimulation history significantly altered the MIOF. On average, temporal coding of modulation frequency was more robust in conditions when low modulation depths predominate, as in reverberant environments. Overall, our results suggest that the auditory system may possess mechanisms for reverberation compensation, and point to an important role of binaural and dynamic neural processes for robust coding of AM in reverberant environments.by Michaël C. C. Slama.Ph.D

    Middle ear pressure gain and cochlear input impedance in the chinchilla

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 35-37).Measurements of middle ear conducted sound pressure in the cochlear vestibule PV have been performed in only a few individuals from a few mammalian species. Simultaneous measurements of sound-induced stapes velocity VS are even more rare. We report simultaneous measurements of VS and PV in chinchillas. The VS measurements were performed using single-beam laser-Doppler vibrometry; PV was measured with fiber optic pressure sensors like those described by Olson [JASA 1998; 103: 3445-63]. Accurate in-vivo measurements of PV are limited by anatomical access to the vestibule, the relative sizes of the sensor and vestibule, and damage to the cochlea when inserting the measurement device. The small size (170 [mu]m diameter) of the fiber-optic pressure sensors helps overcome these three constraints. PV and VS were measured in six animals, and the middle ear pressure gain (ratio of PV to the sound pressure in the ear canal) and the cochlear input impedance (ratio of PV to the product of VS and area of the footplate) computed. Our measurements of middle ear pressure gain are similar to published data in the chinchilla at stimulus frequencies of 500 Hz to 3 kHz, but are different at other frequencies. Our measurements of cochlear input impedance differ somewhat from previous estimates in the chinchilla and show a resistive input impedance up to at least 10 kHz. To our knowledge, these are the first direct measurements of this impedance in the chinchilla. The acoustic power entering the cochlea was computed based on our measurements of input impedance. This quantity was a good predictor for the audiogram at frequencies below 1 kHz.by Michaël C.C. Slama.S.M

    Phoresis in cellular flows: from enhanced dispersion to blockage

    Full text link
    In this article, we study numerically the dispersion of colloids in a two-dimensional cellular flow in the presence of an imposed mean salt gradient. Owing to the additional scalar, the colloids do not follow exactly the Eulerian flow field, but have a (small) extra-velocity proportional to the salt gradient, vdp=αS\mathbf{v}_\mathrm{dp}=\alpha\nabla S, where α\alpha is the phoretic constant and SS the salt concentration. We study the demixing of an homogenous distribution of colloids and how their long-term mean velocity Vm\mathbf{V_m} and effective diffusivity DeffD_\mathrm{eff} are influenced by the phoretic drift. We observe two regimes of colloids dynamics depending on a blockage criterion R=αGL/4DcDsR=\alpha G L/\sqrt{4 D_cD_s}, where GG is the mean salt gradient amplitude, LL the length scale of the flow and DcD_c and DsD_s the molecular diffusivities of colloids and salt. When R<1R<1, the mean velocity is strongly enhanced with VmαGPesV_m \propto \alpha G \sqrt{Pe_s}, PesPe_s being the salt P\'eclet number. When R>1R> 1, the compressibility effect due to the phoretic drift is so strong that a depletion of colloids occurs along the separatrices inhibiting cell-to-cell transport

    Mixed Critical Automotive Embedded Applications on Multicores: A Safe Scheduling Approach for Dependability

    Get PDF
    International audienceMemory access durations on multicore architectures are highly variable, since concurrent accesses to memory by different cores induce time interferences. Consequently, critical software tasks may be delayed by noncritical ones, leading to deadline misses and possible catastrophic failures. We present an approach to tackle the implementation of mixed criticality workloads on multicore chips, focusing on task chains, i.e., sequences of tasks with end-to-end deadlines. Our main contribution is a Monitoring & Control System able to stop noncritical software execution in order to prevent memory interference and guarantee that critical tasks deadlines are met. This paper describes our approach, and the associated experimental framework to conduct experiments to analyze attainable real-time guarantees on a multicore platform

    Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation

    Get PDF
    Ionizing radiation can elicit harmful effects on the cardiovascular system at high doses. Endothelial cells are critical targets in radiation-induced cardiovascular damage. Astronauts performing a long-term deep space mission are exposed to consistently higher fluences of ionizing radiation that may accumulate to reach high effective doses. In addition, cosmic radiation contains high linear energy transfer (LET) radiation that is known to produce high values of relative biological effectiveness (RBE). The aim of this study was to broaden the understanding of the molecular response to high LET radiation by investigating the changes in gene expression in endothelial cells. For this purpose, a human endothelial cell line (EA.hy926) was irradiated with accelerated nickel ions (Ni) (LET, 183 keV/mu m) at doses of 0.5, 2 and 5 Gy. DNA damage was measured 2 and 24 h following irradiation by gamma-H2AX foci detection by fluorescence microscopy and gene expression changes were measured by microarrays at 8 and 24 h following irradiation. We found that exposure to accelerated nickel particles induced a persistent DNA damage response up to 24 h after treatment. This was accompanied by a downregulation in the expression of a multitude of genes involved in the regulation of the cell cycle and an upregulation in the expression of genes involved in cell cycle checkpoints. In addition, genes involved in DNA damage response, oxidative stress, apoptosis and cell-cell signaling (cytokines) were found to be upregulated. An in silico analysis of the involved genes suggested that the transcription factors, E2F and nuclear factor (NF)-kappa B, may be involved in these cellular responses
    corecore