12,007 research outputs found

    Weak coordination among petiole, leaf, vein, and gas-exchange traits across Australian angiosperm species and its possible implications.

    Get PDF
    Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life forms. However, it has also been suggested that this relationship may become weak or break down completely within the angiosperms. We examined coordination between hydraulic, leaf vein, and gas-exchange traits across a diverse group of 35 evergreen Australian angiosperms, spanning a large range in leaf structure and habitat. Leaf-specific conductance was calculated from petiole vessel anatomy and was also measured directly using the rehydration technique. Leaf vein density (thought to be a determinant of gas exchange rate), maximal stomatal conductance, and net CO 2 assimilation rate were also measured for most species (n = 19-35). Vein density was not correlated with leaf-specific conductance (either calculated or measured), stomatal conductance, nor maximal net CO 2 assimilation, with r (2) values ranging from 0.00 to 0.11, P values from 0.909 to 0.102, and n values from 19 to 35 in all cases. Leaf-specific conductance calculated from petiole anatomy was weakly correlated with maximal stomatal conductance (r (2) = 0.16; P = 0.022; n = 32), whereas the direct measurement of leaf-specific conductance was weakly correlated with net maximal CO 2 assimilation (r (2) = 0.21; P = 0.005; n = 35). Calculated leaf-specific conductance, xylem ultrastructure, and leaf vein density do not appear to be reliable proxy traits for assessing differences in rates of gas exchange or growth across diverse sets of evergreen angiosperms

    Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency

    Get PDF
    The nonhomologous DNA end-joining (NHEJ) pathway is a key mechanism for repairing dsDNA breaks that occur often in eukaryotic cells. In the simplest model, these breaks are first recognized by Ku, which then interacts with other NHEJ proteins to improve their affinity at DNA ends. These include DNA-PKcs_{cs} and Artemis for trimming the DNA ends; DNA polymerase μ and λ to add nucleotides; and the DNA ligase IV complex to ligate the ends with the additional factors, XRCC4 (X-ray repair cross-complementing protein 4), XLF (XRCC4-like factor/Cernunos), and PAXX (paralog of XRCC4 and XLF). In vivo\textit{In vivo} studies have demonstrated the degrees of importance of these NHEJ proteins in the mechanism of repair of dsDNA breaks, but interpretations can be confounded by other cellular processes. In vitro\textit{In vitro} studies with NHEJ proteins have been performed to evaluate the nucleolytic resection, polymerization, and ligation steps, but a complete system has been elusive. Here we have developed a NHEJ reconstitution system that includes the nuclease, polymerase, and ligase components to evaluate relative NHEJ efficiency and analyze ligated junctional sequences for various types of DNA ends, including blunt, 5' overhangs, and 3' overhangs. We find that different dsDNA end structures have differential dependence on these enzymatic components. The dependence of some end joining on only Ku and XRCC4·DNA ligase IV allows us to formulate a physical model that incorporates nuclease and polymerase components as needed.National Institutes of Health, Cancer Research UK Program Grant IDs: C6/A11224, C6946/A14492), Wellcome Trust (Grant IDs: WT092096, WT093167

    Long non-coding RNA HOTAIR drives EZH2-dependent myofibroblast activation in systemic sclerosis through miRNA 34a-dependent activation of NOTCH

    Get PDF
    Background Systemic sclerosis (SSc) is characterised by autoimmune activation, tissue and vascular fibrosis in the skin and internal organs. Tissue fibrosis is driven by myofibroblasts, that are known to maintain their phenotype in vitro, which is associated with epigenetically driven trimethylation of lysine 27 of histone 3 (H3K27me3). Methods- Full-thickness skin biopsies were surgically obtained from the forearms of 12 adult patients with SSc of recent onset. Fibroblasts were isolated and cultured in monolayers and protein and RNA extracted. HOX transcript antisense RNA (HOTAIR) was expressed in healthy dermal fibroblasts by lentiviral induction employing a vector containing the specific sequence. Gamma secretase inhibitors were employed to block Notch signalling. Enhancer of zeste 2 (EZH2) was blocked with GSK126 inhibitor. Results- SSc myofibroblasts in vitro and SSc skin biopsies in vivo display high levels of HOTAIR, a scaffold long non-coding RNA known to direct the histone methyltransferase EZH2 to induce H3K27me3 in specific target genes. Overexpression of HOTAIR in dermal fibroblasts induced EZH2-dependent increase in collagen and α-SMA expression in vitro, as well as repression of miRNA-34A expression and consequent NOTCH pathway activation. Consistent with these findings, we show that SSc dermal fibroblast display decreased levels of miRNA-34a in vitro. Further, EZH2 inhibition rescued miRNA-34a levels and mitigated the profibrotic phenotype of both SSc and HOTAIR overexpressing fibroblasts in vitro. Conclusions- Our data indicate that the EZH2-dependent epigenetic phenotype of myofibroblasts is driven by HOTAIR and is linked to miRNA-34a repression-dependent activation of NOTCH signalling

    Overcoming cross-cultural group work tensions: mixed student perspectives on the role of social relationships

    Get PDF
    As universities worldwide rapidly internationalise, higher education classrooms have become unique spaces for collaboration between students from different countries. One common way to encourage collaboration between diverse peers is through group work. However, previous research has highlighted that cross-cultural group work can be challenging and has hinted at potential social tensions. To understand this notion better, we have used robust quantitative tools in this study to select 20 participants from a larger classroom of 860 students to take part in an in-depth qualitative interview about cross-cultural group work experiences. Participant views on social tensions in cross-cultural group work were elicited using a unique mediating artefact method to encourage reflection and in-depth discussion. In our analysis of emergent interview themes, we compared student perspectives on the role of social relationships in group work by their academic performance level. Our findings indicated that all students interviewed desired the opportunity to form social relationships with their group work members, but their motivations for doing so varied widely by academic performance level

    Characterization of human mesothelin transcripts in ovarian and pancreatic cancer

    Get PDF
    BACKGROUND: Mesothelin is an attractive target for cancer immunotherapy due to its restricted expression in normal tissues and high level expression in several tumor types including ovarian and pancreatic adenocarcinomas. Three mesothelin transcript variants have been reported, but their relative expression in normal tissues and tumors has been poorly characterized. The goal of the present study was to clarify which mesothelin transcript variants are commonly expressed in human tumors. METHODS: Human genomic and EST nucleotide sequences in the public databases were used to evaluate sequences reported for the three mesothelin transcript variants in silico. Subsequently, RNA samples from normal ovary, ovarian and pancreatic carcinoma cell lines, and primary ovarian tumors were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and nucleotide sequencing to directly identify expressed transcripts. RESULTS: In silico comparisons of genomic DNA sequences with available EST sequences supported expression of mesothelin transcript variants 1 and 3, but there were no sequence matches for transcript variant 2. Newly-derived nucleotide sequences of RT-PCR products from tissues and cell lines corresponded to mesothelin transcript variant 1. Mesothelin transcript variant 2 was not detected. Transcript variant 3 was observed as a small percentage of total mesothelin amplification products from all studied cell lines and tissues. Fractionation of nuclear and cytoplasmic RNA indicated that variant 3 was present primarily in the nuclear fraction. Thus, mesothelin transcript variant 3 may represent incompletely processed hnRNA. CONCLUSION: Mesothelin transcript variant 1 represents the predominant mature mRNA species expressed by both normal and tumor cells. This conclusion should be important for future development of cancer immunotherapies, diagnostic tests, and gene microarray studies targeting mesothelin

    A Geometric Approach to CP Violation: Applications to the MCPMFV SUSY Model

    Get PDF
    We analyze the constraints imposed by experimental upper limits on electric dipole moments (EDMs) within the Maximally CP- and Minimally Flavour-Violating (MCPMFV) version of the MSSM. Since the MCPMFV scenario has 6 non-standard CP-violating phases, in addition to the CP-odd QCD vacuum phase \theta_QCD, cancellations may occur among the CP-violating contributions to the three measured EDMs, those of the Thallium, neutron and Mercury, leaving open the possibility of relatively large values of the other CP-violating observables. We develop a novel geometric method that uses the small-phase approximation as a starting point, takes the existing EDM constraints into account, and enables us to find maximal values of other CP-violating observables, such as the EDMs of the Deuteron and muon, the CP-violating asymmetry in b --> s \gamma decay, and the B_s mixing phase. We apply this geometric method to provide upper limits on these observables within specific benchmark supersymmetric scenarios, including extensions that allow for a non-zero \theta_QCD.Comment: 34 pages, 16 eps figures, to appear in JHE

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils
    corecore