2,110 research outputs found
The Structure on Invariant Measures of generic diffeomorphisms
Let be an isolated non-trival transitive set of a generic
diffeomorphism f\in\Diff(M). We show that the space of invariant measures
supported on coincides with the space of accumulation measures of
time averages on one orbit. Moreover, the set of points having this property is
residual in (which implies the set of irregular points is also
residual in ). As an application, we show that the non-uniform
hyperbolicity of irregular points in with totally 0 measure
(resp., the non-uniform hyperbolicity of a generic subset in )
determines the uniform hyperbolicity of
Multi-Layer Cyber-Physical Security and Resilience for Smart Grid
The smart grid is a large-scale complex system that integrates communication
technologies with the physical layer operation of the energy systems. Security
and resilience mechanisms by design are important to provide guarantee
operations for the system. This chapter provides a layered perspective of the
smart grid security and discusses game and decision theory as a tool to model
the interactions among system components and the interaction between attackers
and the system. We discuss game-theoretic applications and challenges in the
design of cross-layer robust and resilient controller, secure network routing
protocol at the data communication and networking layers, and the challenges of
the information security at the management layer of the grid. The chapter will
discuss the future directions of using game-theoretic tools in addressing
multi-layer security issues in the smart grid.Comment: 16 page
STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride
Graphene has demonstrated great promise for future electronics technology as
well as fundamental physics applications because of its linear energy-momentum
dispersion relations which cross at the Dirac point. However, accessing the
physics of the low density region at the Dirac point has been difficult because
of the presence of disorder which leaves the graphene with local microscopic
electron and hole puddles, resulting in a finite density of carriers even at
the charge neutrality point. Efforts have been made to reduce the disorder by
suspending graphene, leading to fabrication challenges and delicate devices
which make local spectroscopic measurements difficult. Recently, it has been
shown that placing graphene on hexagonal boron nitride (hBN) yields improved
device performance. In this letter, we use scanning tunneling microscopy to
show that graphene conforms to hBN, as evidenced by the presence of Moire
patterns in the topographic images. However, contrary to recent predictions,
this conformation does not lead to a sizable band gap due to the misalignment
of the lattices. Moreover, local spectroscopy measurements demonstrate that the
electron-hole charge fluctuations are reduced by two orders of magnitude as
compared to those on silicon oxide. This leads to charge fluctuations which are
as small as in suspended graphene, opening up Dirac point physics to more
diverse experiments than are possible on freestanding devices.Comment: Nature Materials advance online publication 13/02/201
Large tunable valley splitting in edge-free graphene quantum dots on boron nitride
Coherent manipulation of binary degrees of freedom is at the heart of modern
quantum technologies. Graphene offers two binary degrees: the electron spin and
the valley. Efficient spin control has been demonstrated in many solid state
systems, while exploitation of the valley has only recently been started, yet
without control on the single electron level. Here, we show that van-der Waals
stacking of graphene onto hexagonal boron nitride offers a natural platform for
valley control. We use a graphene quantum dot induced by the tip of a scanning
tunneling microscope and demonstrate valley splitting that is tunable from -5
to +10 meV (including valley inversion) by sub-10-nm displacements of the
quantum dot position. This boosts the range of controlled valley splitting by
about one order of magnitude. The tunable inversion of spin and valley states
should enable coherent superposition of these degrees of freedom as a first
step towards graphene-based qubits
Efficient control of atmospheric sulfate production based on three formation regimes
The formation of sulfate (SO₄²⁻) in the atmosphere is linked chemically to its direct precursor, sulfur dioxide (SO₂), through several key oxidation paths for which nitrogen oxides or NO_x (NO and NO₂) play essential roles. Here we present a coherent description of the dependence of SO₄²⁻ formation on SO₂ and NO_x under haze-fog conditions, in which fog events are accompanied by high aerosol loadings and fog-water pH in the range of 4.7–6.9. Three SO₄²⁻ formation regimes emerge as defined by the role played by NO_x. In the low-NO_x regime, NO_x act as catalyst for HO_x, which is a major oxidant for SO₂, whereas in the high-NO_x regime, NO₂ is a sink for HO_x. Moreover, at highly elevated NO_x levels, a so-called NO₂-oxidant regime exists in which aqueous NO₂ serves as the dominant oxidant of SO₂. This regime also exists under clean fog conditions but is less prominent. Sensitivity calculations using an emission-driven box model show that the reduction of SO₄²⁻ is comparably sensitive to the reduction of SO₂ and NO_x emissions in the NO₂-oxidant regime, suggesting a co-reduction strategy. Formation of SO₄²⁻ is relatively insensitive to NO_x reduction in the low-NO_x regime, whereas reduction of NO_x actually leads to increased SO₄²⁻ production in the intermediate high-NO_x regime
Disparities and risks of sexually transmissible infections among men who have sex with men in China: a meta-analysis and data synthesis.
BACKGROUND: Sexually transmitted infections (STIs), including Hepatitis B and C virus, are emerging public health risks in China, especially among men who have sex with men (MSM). This study aims to assess the magnitude and risks of STIs among Chinese MSM. METHODS: Chinese and English peer-reviewed articles were searched in five electronic databases from January 2000 to February 2013. Pooled prevalence estimates for each STI infection were calculated using meta-analysis. Infection risks of STIs in MSM, HIV-positive MSM and male sex workers (MSW) were obtained. This review followed the PRISMA guidelines and was registered in PROSPERO. RESULTS: Eighty-eight articles (11 in English and 77 in Chinese) investigating 35,203 MSM in 28 provinces were included in this review. The prevalence levels of STIs among MSM were 6.3% (95% CI: 3.5-11.0%) for chlamydia, 1.5% (0.7-2.9%) for genital wart, 1.9% (1.3-2.7%) for gonorrhoea, 8.9% (7.8-10.2%) for hepatitis B (HBV), 1.2% (1.0-1.6%) for hepatitis C (HCV), 66.3% (57.4-74.1%) for human papillomavirus (HPV), 10.6% (6.2-17.6%) for herpes simplex virus (HSV-2) and 4.3% (3.2-5.8%) for Ureaplasma urealyticum. HIV-positive MSM have consistently higher odds of all these infections than the broader MSM population. As a subgroup of MSM, MSW were 2.5 (1.4-4.7), 5.7 (2.7-12.3), and 2.2 (1.4-3.7) times more likely to be infected with chlamydia, gonorrhoea and HCV than the broader MSM population, respectively. CONCLUSION: Prevalence levels of STIs among MSW were significantly higher than the broader MSM population. Co-infection of HIV and STIs were prevalent among Chinese MSM. Integration of HIV and STIs healthcare and surveillance systems is essential in providing effective HIV/STIs preventive measures and treatments. TRIAL REGISTRATION: PROSPERO NO: CRD42013003721
Measurement of the Total Cross Section for Hadronic Production by e+e- Annihilation at Energies between 2.6-5 Gev
Using the upgraded Beijing Spectrometer (BESII), we have measured the total
cross section for annihilation into hadronic final states at
center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6 and 5.0 GeV. Values of ,
, are determined.Comment: Submitted to Phys. Rev. Let
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
Measurements of the Cross Section for e+e- -> hadrons at Center-of-Mass Energies from 2 to 5 GeV
We report values of for 85 center-of-mass energies between
2 and 5 GeV measured with the upgraded Beijing Spectrometer at the Beijing
Electron-Positron Collider.Comment: 5 pages, 3 figure
- …
