25 research outputs found

    Drug discovery: Insights from the invertebrate Caenorhabditis elegans

    Get PDF
    Therapeutic drug development is a long, expensive, and complex process that usually takes 12–15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.Fil: Giunti, SebastiĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Andersen, Natalia Denise. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Rayes, Diego HernĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: de Rosa, Maria Jose. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; Argentin

    Susceptibility and Antibody Response of the Laboratory Model Zebra Finch (Taeniopygia guttata) to West Nile Virus

    Get PDF
    Since the introduction of West Nile virus (WNV) into North America in 1999 a number of passerine bird species have been found to play a role in the amplification of the virus. Arbovirus surveillance, observational studies and experimental studies have implicated passerine birds (songbirds, e.g., crows, American robins, house sparrows, and house finches) as significant reservoirs of WNV in North America, yet we lack a tractable passerine animal model for controlled studies of the virus. The zebra finch (Taeniopygia guttata) serves as a model system across a diversity of fields, and here we develop the zebra finch a songbird model for WNV. Like many natural hosts of WNV, we found that zebra finches developed sufficient viremia to serve as a competent host, yet in general resisted mortality from infection. In the Australian zebra finch (AZF) T. g. castanotis, we detected WNV in the majority of sampled tissues by 4 days post injection (dpi). However, WNV was not detected in tissues of sacrificed birds at 14 dpi, shortly after the development of detectable anti-WNV antibodies in the majority of birds indicating successful viral clearance. We compared susceptibility between the two zebra finch subspecies AZF and Timor zebra finch (TZF) T. g. guttata. Compared to AZF, WNV RNA was detected in a larger proportion of challenged TZF and molecular detection of virus in the serum of TZF was significantly higher than in AZF. Given the observed moderate host competence and disease susceptibility, we suggest that zebra finches are appropriate as models for the study of WNV and although underutilized in this respect, may be ideal models for the study of the many diseases carried and transmitted by songbirds
    corecore