106 research outputs found

    The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world

    Get PDF
    Biotechnology has empirically established that it is easier to construct and evaluate variant genes and proteins than to account for the emergence and function of wild-type macromolecules. Systematizing this constructive approach, synthetic biology now promises to infer and assemble entirely novel genomes, cells and ecosystems. It is argued here that the theoretical and computational tools needed for this endeavor are missing altogether. However, such tools may not be required for diversifying organisms at the basic level of their chemical constitution by adding, substituting or removing elements and molecular components through directed evolution under selection. Most importantly, chemical diversification of life forms could be designed to block metabolic cross-feed and genetic cross-talk between synthetic and wild species and hence protect natural habitats and human health through novel types of containment

    The Antiquity and Evolutionary History of Social Behavior in Bees

    Get PDF
    A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives

    Herbal remedy knowledge acquisition and transmission among the Yucatec Maya in Tabi, Mexico: a cross-sectional study

    Get PDF
    BACKGROUND: Ethnobotanical knowledge continues to be important for treating illness in many rural communities, despite access to health care clinics and pharmaceuticals. However, access to health care clinics and other modern services can have an impact on the distribution of medical ethnobotanical knowledge. Many factors have been shown to be associated with distributions in this type of knowledge. The goal of the sub-analyses reported in this paper was to better understand the relationship between herbal remedy knowledge, and two such factors, age and social network position, among the Yucatec Maya in Tabi, Yucatan. METHODS: The sample consisted of 116 Yucatec Maya adults. Cultural consensus analysis was used to measure variation in herbal remedy knowledge using competence scores, which is a measure of participant agreement within a domain. Social network analysis was used to measure individual position within a network using in-degree scores, based on the number of people who asked an individual about herbal remedies. Surveys were used to capture relevant personal attributes, including age. RESULTS: Analysis revealed a significant positive correlation between age and the herbal medicine competence score for individuals 45 and under, and no relationship for individuals over 45. There was an insignificant relationship between in-degree and competence scores for individuals 50 and under and a significant positive correlation for those over 50. CONCLUSIONS: There are two possible mechanisms that could account for the differences between cohorts: 1) knowledge accumulation over time; and/or 2) the stunting of knowledge acquisition through delayed acquisition, competing treatment options, and changes in values. Primary ethnographic evidence suggests that both mechanisms may be at play in Tabi. Future studies using longitudinal or cross-site comparisons are necessary to determine the whether and how the second mechanism is influencing the different cohorts.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Increasing the bactofection capacity of a mammalian expression vector by removal of the f1 ori

    Get PDF
    Bacterial-mediated cancer therapy has shown great promise in in vivo tumour models with increased survival rates post-bacterial treatment. Improving efficiency of bacterial-mediated tumour regression has focused on controlling and exacerbating bacterial cytotoxicity towards tumours. One mechanism that has been used to carry this out is the process of bactofection where post-invasion, bacteria deliver plasmid-borne mammalian genes into target cells for expression. Here we utilised the cancer-targeting Salmonella Typhimurium strain, SL7207, to carry out bactofection into triple negative breast cancer MDA-MB-231 cells. However, we noted that post-transformation with the commonly used mammalian expression vector pEGFP, S. Typhimurium became filamentous, attenuated and unable to invade target cells efficiently. Filamentation did not occur in Escherichia coli-transformed with the same plasmid. Further investigation identified the region inducing S. Typhimurium filamentation as being the f1 origin of replication (f1 ori), an artefact of historic use of mammalian plasmids for single stranded DNA production. Other f1 ori-containing plasmids also induced the attenuated phenotype, while removal of the f1 ori from pEGFP restored S. Typhimurium virulence and increased the bactofection capacity. This work has implications for interpretation of prior bactofection studies employing f1 ori-containing plasmids in S. Typhimurium, while also indicating that future use of S. Typhimurium in targeting tumours should avoid the use of these plasmids

    Prozentualer Anteil von3H-oder14C-Thymidin an der DNS-Synthese von Zellarten der Maus

    No full text

    Palladium-catalyzed enolate arylation as a key C-C bond-forming reaction for the synthesis of isoquinolines.

    No full text
    The palladium-catalyzed coupling of an enolate with an ortho-functionalized aryl halide (an α-arylation) furnishes a protected 1,5-dicarbonyl moiety that can be cyclized to an isoquinoline with a source of ammonia. This fully regioselective synthetic route tolerates a wide range of substituents, including those that give rise to the traditionally difficult to access electron-deficient isoquinoline skeletons. These two synthetic operations can be combined to give a three-component, one-pot isoquinoline synthesis. Alternatively, cyclization of the intermediates with hydroxylamine hydrochloride engenders direct access to isoquinoline N-oxides; and cyclization with methylamine, gives isoquinolinium salts. Significant diversity is available in the substituents at the C4 position in four-component, one-pot couplings, by either trapping the in situ intermediate after α-arylation with carbon or heteroatom-based electrophiles, or by performing an α,α-heterodiarylation to install aryl groups at this position. The α-arylation of nitrile and ester enolates gives access to 3-amino and 3-hydroxyisoquinolines and the α-arylation of tert-butyl cyanoacetate followed by electrophile trapping, decarboxylation and cyclization, C4-functionalized 3-aminoisoquinolines. An oxime directing group can be used to direct a C-H functionalization/bromination, which allows monofunctionalized rather than difunctionalized aryl precursors to be brought through this synthetic route
    corecore