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Abstract

Bacterial-mediated cancer therapy has shown great promise in in vivo tumour models with increased survival rates post-
bacterial treatment. Improving efficiency of bacterial-mediated tumour regression has focused on controlling and
exacerbating bacterial cytotoxicity towards tumours. One mechanism that has been used to carry this out is the process of
bactofection where post-invasion, bacteria deliver plasmid-borne mammalian genes into target cells for expression. Here we
utilised the cancer-targeting Salmonella Typhimurium strain, SL7207, to carry out bactofection into triple negative breast
cancer MDA-MB-231 cells. However, we noted that post-transformation with the commonly used mammalian expression
vector pEGFP, S. Typhimurium became filamentous, attenuated and unable to invade target cells efficiently. Filamentation
did not occur in Escherichia coli-transformed with the same plasmid. Further investigation identified the region inducing
S. Typhimurium filamentation as being the f1 origin of replication (f1 ori), an artefact of historic use of mammalian plasmids
for single stranded DNA production. Other f1 ori-containing plasmids also induced the attenuated phenotype, while removal
of the f1 ori from pEGFP restored S. Typhimurium virulence and increased the bactofection capacity. This work has
implications for interpretation of prior bactofection studies employing fl ori-containing plasmids in S. Typhimurium, while
also indicating that future use of S. Typhimurium in targeting tumours should avoid the use of these plasmids.

Introduction [1, 2]. S. Typhimurium is known to target tumours during

infection and is capable of tumour growth arrest in in vivo

Salmonella enterica serovar Typhimurium is a Gram-
negative facultative intracellular pathogen that can cause
diseases ranging from gastroenteritis to systemic infection.
Infection is driven by a number of pathogenicity islands
bearing virulence factors which are delivered into host cells
by type three secretion systems borne on the same islands
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tumour models [3-5]. Tumours offer bacteria a unique
niche in which to grow, with nutrient availability high and
with tumours being immune privileged sites offering pro-
tection to infiltrating bacteria [6, 7]. Bacteria are also
attractive tumour targeting agents with a number of unique
features including; capability for systemic administration,
broad tumour specificity, immune activation at tumour sites,
antibiotic sensitivity to allow easy removal and tumour cell-
specific delivery of either DNA or protein of interest [8].
Previous efforts have sought to enhance the innate
tumouricidal capabilities of bacteria through a variety
of strategies. These have included the S. Typhimurium-
mediated delivery of apoptotic proteins to tumour cells or
overexpression of plasmid-encoded Vibrio vulnificus FlaB
to slow tumour growth [9, 10]. It has also been reported that
bacteria can be utilised for the delivery of small hairpin
RNA (shRNA) and eukaryotic expression plasmids to
cancer cells [11-13]. This latter strategy, termed bactofec-
tion [14, 15], utilises bacteria to deliver genetic material to a
target cell or tissue and has been tested in a variety of cancer
models [16-18], as well as other diseases such as cystic
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Table 1 Bacterial strains used in this study

Strain Relevant genotype Source

VNP20009 S. Typhimurium ApurA AmsbB Dr John Pawelek (Yale University) [64]

SL7207 S. Typhimurium AaroA Dr Siegfried Weiss (Helmholtz Centre for Infection Research) [41]
LT2 Laboratory S. Typhimurium strain Dr Gillian Douce (University of Glasgow)

SL1344 hisG mutant of 4/74 Prof. Beth McCormick (Uni. of Massachusetts Medical School) [42]
JH3010 SL1344-prgH-gfp Prof. Jay Hinton (University of Liverpool) [48]

JH3016 SL1344-rpsM-gfp Prof. Jay Hinton (University of Liverpool) [48]

K12 Laboratory E. coli strain Prof. Andrew Roe (University of Glasgow)

LF82 Adherent-Invasive E. coli Prof. Daniel Walker (University of Glasgow)

F18 Commensal E. coli Prof. Beth McCormick (Uni. of Massachusetts Medical School) [65]
DH5a Laboratory E. coli strain —

BL21 Laboratory E. coli strain —

fibrosis [19, 20], colitis [21] and Leishmaniasis [22], or
simply just for vaccination [23-26]. Once internalised,
bacteria lyse releasing the plasmid for heterologous
expression of the target protein by host mammalian cells
[27]. The process is not restricted to phagocytic cells and
there have been reports of extracellular bacteria mediating
DNA transfer to host cells via conjugation [28]. The
mechanisms underlying mammalian cell uptake and
expression of delivered DNA remain incompletely under-
stood but certain features of plasmids used for bactofection
are thought to contribute to the success and efficiency of the
process [29-31]. Alternative means of using bacteria for
delivery of DNA into human cells are also under investi-
gation, such as delivery through bacterial Type IV secretion
systems, and these have also shown significant promise
[32].

Multiple bacterial genera are now known to be capable of
bactofection including Escherichia, Listeria, and Salmo-
nella [13-36]. Previous studies utilising Salmonella spp. to
deliver plasmids to cancer cells have used pro-apoptotic, as
well as immunogenic genes to enhance the tumouricidal
effects of the bacteria [11, 37, 38]. Many cancer cells pro-
duce cancer cell-specific de novo antigens, and thus act as
cancer-specific signals for immune cells to target [39].
Bacteria have been used to exploit this by delivering
eukaryotic expression vectors encoding tumour antigens to
eukaryotic cells and this has also been employed for the
purposes of vaccination against tumour cell challenge
[36, 40].

Here, using the attenuated strain SL7207 [41, 42], we
determined that plasmid carriage by S. Typhimurium
tumour-targeting strains induced a filamentous phenotype,
reducing invasion of cancer cells and subsequently bacto-
fection. We determined that this phenotype was dependent
on the presence of an f1 origin of replication (f1 ori) in the
plasmid and that its removal eliminated the filamentous
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phenotype and restored invasion and bactofection of cancer
cells. This work will have important implications for use of
Salmonella in future bactofection studies. These fl ori-
containing plasmids are some of the most commonly used
plasmids for the purposes of bactofection and mammalian
DNA carriage by bacteria. The data presented here argues
against their use in future studies of bacterial-mediated
cancer therapy.

Materials and methods
Bacterial strains, plasmids and cancer cell lines

Bacterial strains used in this study are listed in Table 1.
Bacteria were grown in Lysogeny broth (LB) supplemented
with antibiotics at the following concentrations: kanamycin,
50 pg/ml; ampicillin, 100 pg/ml; chloramphenicol, 500 pg/
ml or erythromycin, 50 ug/ml. Plasmids used in this study
are detailed in Table 2. Electroporation was performed
using an Eppendorf Eporator (1.75 Kv, 5 ms). MDA-MB-
231 cells were obtained from the American Type Culture
Collection. MDA-MB-231 cells were maintained in Ros-
well Park Memorial Institute (RPMI)-1640 media (Gibco®,
12633) supplemented with 10% foetal calf serum (FCS), 1
mM L-glutamine, 2 mM sodium pyruvate and 100 interna-
tional units (IU)/ml penicillin/streptomycin (all Sigma) at
37°C and 5% CO,. Cells were routinely tested using the
MycoAlert PLUS Mycoplasma detection kit (Lonza) to
ensure they were Mycoplasma free.

Generation of the pACYC-EGFP and pEGFP(-f1)
plasmids

pACYC-EGFP:  Escherichia  coli DHS5a
pACYC184 were grown overnight in

carrying
10ml LB
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Table 2 Plasmids used in this study

Plasmid Function Features Source
pEGFP-C2 Eukaryotic expression vector EGFP under the control of the CMV promoter Clontech
pUC19 High copy number plasmid pUC19 origin of replication NEB
Source of lacZ gene lacZ gene
pLuc Eukaryotic expression vector similar to pEGFP Ampicillin resistance, luciferase transgene, fl ori ~ Addgene,
45968
prpsM-GFP Prokaryotic GFP reporter plasmid Constitutive prokaryotic GFP expression [66]
pEGFP(-f1) Test if removal of f1 ori from pEGFP abrogates pEGFP lacking f1 ori This study
filamentation
pACYC-EGFP  Test if EGFP can drive filamentation in pACYC184  rpsmGFP plasmid plus EGFP transgene from This study
pEGFP
Table 3 Primers used in this study
Primer name Purpose Sequence

Plasmid: pACYC-EGFP
EGFP F

EGFP R

Plasmid: pEGFP(-f1)
pEGFP(-f1) F
pEGFP(f1-ori) R

lacZ F

lacZ R

Amplification of CMV-EGFP
Amplification of CMV-EGFP

Amplification of vector backbone
Amplification of vector backbone
Amplification of insert

Amplification of insert

CTGCATTAATGCGTTACATAACTTACGGTAAATGG
CGACGCATGCACGCGTTAAGATACATTGATGAGTT

CTGGGGTGCCTAATGAGTGATTTTATGTTTCAGGTTCAGGGG
GGTTTTCACCGTCATCACCGCAATTAGTCAGCAACCAGGTG
TCACTCATTAGGCACCCCAG

CGGTGATGACGGTGAAAAC

supplemented with chloramphenicol and the plasmid iso-
lated using a QIAprep® Spin Miniprep Kit (Qiagen). The
EGFP gene was PCR amplified from pEGFP-C2, hereafter
referred to as pEGFP, using the Q5 High-Fidelity DNA
Polymerase kit (NEB). All primers used in this study are
listed in Table 3. pACYC184 was digested with Asel and
Sphl (ThermoFisher Scientific) to generate a 1.5kb frag-
ment. Ligation of EGFP into the pACYC184 backbone was
carried out using T4 DNA Ligase (NEB) per the manu-
facturers’ instructions before being transformed into com-
petent E. coli DH5a cells.

pEGFP(-f1): Fragments were amplified by PCR from
pEGFP (vector) and pUCI19 (lacZ insert) as described
above, using primers listed in Table 3. The primers were
designed to provide overlapping sequences between the
amplified products to promote homologous recombination
upon ligation. The fragments (0.03-0.2 pmol at a vector:
insert ratio of 1:2) were co-incubated in the presence of 1x
NEBuilder® HiFi DNA Assembly Master Mix buffer (NEB)
at 50 °C for 15 min to allow for plasmid assembly. Samples
were then placed on ice prior to electroporation into com-
petent E. coli BL21. Transformants containing the assem-
bled plasmid were selected for on the appropriate antibiotic-
containing LB agar and sequencing analysis used to confirm
successful assembly.

Bacterial growth, cell culture and infection

Bacteria were grown overnight with aeration in LB at 37 °C
with shaking at 180 revolutions per minute (rpm). Bacteria
were then back-diluted to an optical density at 600 nm
(ODgp) of 0.05 in 50 ml of LB culture and supplemented
with antibiotics where appropriate. For growth curves,
cultures were then allowed to grow as before with ODgg
readings taken at regular intervals. For infection of mam-
malian cells, cultures were harvested at mid-log phase at an
ODgqg of ~0.6 and diluted in RPMI (3% FCS, 1% L-gluta-
mine) to give a multiplicity of infection (MOI) of 100.
MDA-MB-231 cells were seeded at 5 x 10° cells/well of
a 6-well plate in RPMI (3% FCS, 1% L-glutamine) 24 h
prior to infection. Immediately prior to infection, cells were
washed twice with phosphate buffered saline (PBS) to
remove debris. Cells were infected at an MOI of 100 in
RPMI (3% FCS, 1% L-glutamine) and infection allowed to
proceed for 1h before three washes with RPMI (3% FCS,
1% vL-glutamine, 50 ug/ml gentamycin). Cells were then
incubated in the same media until harvest. For colony
forming unit (CFU) counts, cells were washed three times
with PBS before 200 pl of 1% Triton X-100 (Sigma) in PBS
was added to each well to lyse cells. Bacteria were serially
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Fig. 1 Morphology of SL7207- A
pEGFP. Wild type SL7207 and

SL-pEGFP were grown in
culture to mid-log phase, Gram-
stained and examined by light
microscopy. Representative light
microscopy images of Gram-
stained SL7207 cultures, both
wild type and SL-pEGFP (a).
Scale bars 10 um. The mean
length of individual bacteria (b).

Length (pm)

L I

SL7207 SL-pEGFP

SL7207

Quantification of the proportion
of SL7207 in culture which were

(9]

filamentous (>6 um; ¢). Results
displayed are the average of at
least two independent biological
replicates. Error bars SEM.
Representative Gram-stains are
shown for each culture.
Statistical analyses performed
using a Students ¢ test where p <
0.01%*

1001

50

% of population

D>6um
.<6pm

SL-pEGFP

diluted in LB broth and spread onto LB agar plates con-
taining the appropriate antibiotic. Total bacteria were
enumerated by CFU counts after overnight incubation at
37°C.

Gram-staining and bacterial cell length
measurement

Gram-staining was carried out using an Analytical Gram-
Stain Kit (Fluka) and bacteria imaged on a Leica DM2000
microscope. Three biological replicates were imaged, with
at least 10 images per slide being taken. Cell length cal-
culation was performed using the Measurement Plugln on
ImageJ (National Institutes of Health).

Fluorescent imaging of bacteria

Bacterial strains were grown overnight at 37 °C before back
dilution the following morning and growth further to an
ODgqg of ~0.6. One millilitre of culture was then centrifuged
at 8000 x g for 3 min, washed twice in PBS before being
fixed in 4% (w/v) paraformaldehyde (PFA) at room tem-
perature, for 15 min. Samples were washed twice more in
PBS before being dried onto coverslips and mounted onto
glass slides with 4',6-diamidino-2-phenylindol (DAPI)-
containing mounting media (VWR). Images were taken
using a Leica DMi8 fluorescent microscope. At least three
biological replicates were imaged for each strain, with at
least ten images per coverslip. Images were analysed using
the CellCounter Plugln on Image].

SPRINGER NATURE

SL7207 SL-pEGFP

Fluorescent imaging of bactofection

Following infection of coverslip-seeded MDA-MB-231
cells, or transfection with 1 mg of purified pEGFP DNA
using Lipofectamine® 2000, cells were washed with PBS,
fixed by adding 4% (w/v) PFA and incubated at room
temperature for 15 min. Samples were washed with 1 ml
PBS and stored in PBS until immunofluorescent staining.
The cells were washed three times for 3 min with PBS and
stained with phalloidin-rhodamine (1 U/sample, Thermo-
Fisher) and 300 nM DAPI (diluted in PBS) for 20 min.
Samples were washed three times with PBS. A drop of
Vectashield Mounting Medium (Vector Laboratories) was
placed on the surface of a microscope slide and the cover-
slip inverted and sealed on top of the slide using clear nail
polish. Images were acquired using a Leica DMi8 for
standard fluorescence microscopy. GFP expression cut-offs
were set against uninfected cells. GFP positive cells were
counted in at least ten images per coverslip in three inde-
pendent biological replicates.

Immunoblot analysis

For immunoblot assays bacterial strains were grown as
previously but with mitomycin-C treatment (5 pg/ml,
Sigma) for 4 h at 30 °C, 120 rpm. Cells were harvested in
late log phase, washed twice in PBS, before being cen-
trifuged and subjected to a freeze-thaw cycle. Cells were re-
suspended in bacterial lysis buffer (S0 mM Tris pH 8.0,
10% v/v glycerol, 0.1% Triton X-100, 100 pg/ml lysozyme,
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Fig. 2 Morphology of S. Typhimurium and E. coli strains transformed
with pEGFP. The S. Typhimurium (a VNP20009 and b LT2) and E.
coli (¢ K12, d F18, and e LF82) strains were transformed with pEGFP.
Quantification of the mean cell lengths of cultures along with repre-
sentative light microscopy images of Gram-stained wild type and

3 U/ml DNAsel, 2mM MgCl,, cOmplete™ Mini (EDTA-
free Protease Inhibitor Cocktail [Sigma]), before being
sonicated three times at 10 mAmps for 30s, on ice. Cells

pEGFP transformed cultures are shown, as indicated. Scale bars 10
um. Results displayed are the average of three independent biological
replicates. Error bars SEM. Representative Gram-stains are shown for
each culture. Statistical analyses performed using a Students 7 test
where p <0.001***; ns not significant

were lysed by five passages through a syringe using a 26-
gauge needle before centrifugation at 16,000 x g. Protein
concentrations were determined using a Pierce BCA Protein
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Fig. 3 Growth and invasion characteristics of SL-pEGFP. Wild type
SL7207 and SL-pEGFP were compared for growth rate (a) and
capacity to invade MDA-MB-231 tumour cells (b). CFU counts of
SL7207 and SL-pEGFP recovered from MDA-MB-231 cells at 2h
post infection. (¢) Quantification of the proportion of bacteria in cul-
ture expressing SPI-1 at mid-log phase using the SPI-1 reporter strain,
JH3010. JH3016 served as a positive control as it is a constitutively

Assay Kit (ThermoFisher Scientific) before Western blot-
ting was carried out using antibodies against either RecA
(Abcam, ab63797) or GroEL (Abcam, ab90522).

Data analysis

All values are expressed as the meantstandard error of the
mean (SEM). Statistical analyses were performed using a
Student’s #-test or one-way analysis of variance (ANOVA)
with Tukey multiple comparisons test as detailed in each
figure legend, to compare differences between groups. All
statistical analyses were performed using GraphPrism 5
(GraphPad Software, Inc., CA, USA). Differences between
groups were considered significant when p <0.05.

Results

S. Typhimurium transformed with pEGFP displays a
filamentous phenotype

In order to assess the bactofection capability of S. Typhi-
murium strain SL7207 it was transformed with the eukar-
yotic reporter plasmid, pPEGFP (SL-pEGFP), which encodes
EGFP under the control of the cytomegalovirus (CMV)
enhancer/promoter region [43]. Transcription of EGFP via
this plasmid is restricted to eukaryotic cells, so GFP signal
is only evident following bactofection of pEGFP into reci-
pient host cells.

Bactofection in multiple tissues has been reported for S.
Typhimurium and the SL'7207 strain has been demonstrated
to be highly capable of delivering DNA to mammalian cells
[36, 23, 44]. Light microscopic analysis however high-
lighted an unusual morphological feature of transformed
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expressing GFP strain. SL-pEGFP served as a negative control for
GFP expression as EGFP was under the control of the CMV promoter.
Results displayed are the average of three independent biological
replicates. Error bars SEM. These experiments were conducted in
liquid culture. Statistical analyses performed using a Students ¢ test (b)
or One Way Anova (c¢) where p < 0.05%, p <0.01*%*. p <0.001#**, p <
0.00071 ****

strains with SL-pEGFP cultures displaying a filamentous
phenotype unlike wild type SL7207 cultures (Fig. 1a). The
mean cell length of SL-pEGFP was significantly greater
than SL7207 (Fig. 1b), but interestingly, not all bacteria
within the culture displayed a filamentous phenotype, which
has previously been defined as a cell length of more than 6
pm [45]. The proportion of SL-pEGFP which were fila-
mentous was 39.58% (x10.82%), whereas there were
<0.01% of SL7207 which were filamentous (Fig. 1c).

The filamentous phenotype induced by the transforma-
tion of pEGFP into S. Typhimurium was not restricted to
SL7207 as multiple other S. Typhimurium strains tested
also displayed filamentous phenotypes following transfor-
mation with pEGFP, including another cancer targeting
strain VNP20009 and the common lab strain S. Typhi-
murium, LT2 (Fig. 2a, b). The observed differences
between these pEGFP-transformed S. Typhimurium strains
and their untransformed counterparts were comparable to
those seen with SL7207.

Effects of pEGFP transformation on E. coli strains

To investigate whether this was a S. Typhimurium-specific
phenomenon, E. coli strains were transformed with pEGFP
and the mean cell lengths were compared to untransformed,
wild type cultures, as before. Although there was a slight
increase in the average mean cell lengths of the transformed
cultures, there were no statistically significant differences
between pEGFP-transformed cultures and non-transformed
wild-type cultures for the laboratory E. coli strain K12
(Fig. 2¢; p =0.2269), commensal E. coli F18 (Fig. 2d; p =
0.2070) or pathogenic E. coli LF82 (Fig. 2e; p =0.2715).
These data suggested that pEGFP-induced filamentation
was S. Typhimurium-specific.
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B
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Fig. 4 Stress response activation in S. Typhimurium carrying pEGFP.
Cultures were grown to mid-log phase (ODgg of ~0.6) and harvested
for western blot analysis for stress response proteins or immuno-
fluorescence staining. a Immunoblot analysis for RecA across multiple
wild type or pEGFP-transformed SL7207 colonies with mitomycin C-
treated (Mito) wild type SL7207 cultures serving as a positive control
for RecA activation. RecA and GroEL levels were determined in at
least three independent replicates of SL7207 and SL-pEGFP.
b Representative DAPI-stained wild type and SL-pEGFP cultures.
Images were pseudo-coloured to aid visualisation of the segmented
filamentous phenotype of SL-pEGFP. Scale bars 5 um. Representative
DAPI-stained images are shown for each culture

Effects of filamentation on SL-pEGFP growth and
invasion of MDA-MB-231 cells

In order to assess the effects that pEGFP-induced fila-
mentation had on the behaviour of S. Typhimurium, mul-
tiple phenotypic characteristics of SL-pEGFP were
compared to SL7207. SL-pEGFP displayed slower cell
growth in vitro compared to SL7207 (Fig. 3a), as well as
decreased capacity to invade MDA-MB-231 cells (Fig. 3b).

The decreased virulence of SL-pEGFP was further
investigated by examining induction of Salmonella Patho-
genicity Island-1 (SPI-1), a key set of virulence determi-
nants that mediate invasion of eukaryotic cells [2, 46, 47].
Using S. Typhimurium JH3010, a prgH-GFP reporter
strain, we determined induction of prgH which encodes a
type 3 secretion system (T3SS) needle apparatus protein
essential for SPI-1-mediated invasion of intestinal epithelial
cells [48]. JH3010 and SL7207 are both derived from wild
type S. Typhimurium SL1344, so SL.1344 transformed with
pEGFP (SL-pEGFP) was used as a negative control to
ensure any GFP signal was coming from expression of
plasmid-borne EGFP. It was found that JH3010-pEGFP
had decreased prgH-GFP expression compared to JH3010
(Fig. 3c), indicating a decrease in SPI-1 expression which
was likely a contributory factor in the attenuated invasion
capacity of S. Typhimurium-pEGFP.

Induction of stress responses in pEGFP-transformed S.

Filamentation is intimately linked with cell stress so the role
of the stress response in pEGFP mediated filamentation was
investigated [45, 49]. The SOS DNA damage stress
response has been investigated in filamentation studies and
so was further investigated here [50, 51]. The SOS stress
response protein, RecA was upregulated in SL-pEGFP,
suggesting that the SOS response is increased in SL-pEGFP
cultures (Fig. 4a).

The induction of the SOS response inhibits septation of
replicating bacteria [52, 49]. This phenotype was investi-
gated in the filamentous cultures by staining fixed cultures
with the nuclear stain DAPI. Fluorescence microscopy
images of filamentous bacteria demonstrated multiple nuclei
aligned along a filamentous bacterium, a phenotype not
evident in the wild type cultures. These data further sug-
gested a role for inhibited septation and the SOS response in
the SL-pEGFP cultures (Fig. 4b).

The contribution of the f1 ori in pEGFP to the
filamentous phenotype of SL-pEGFP

It was hypothesised that there was a feature of pEGFP which
was responsible for inducing this phenotype. The SOS
response is triggered in S. Typhimurium in response to the
presence of cytoplasmic single stranded DNA (ssDNA).
Investigation of the pEGFP plasmid revealed the presence of
filamentous phage 1 origin of replication (fl ori), a phage-
mid capable of phage-directed ssDNA production [53].
Phages have been reported to induce the SOS response in S.
enterica [54]. Therefore, it was hypothesised that the f1 ori
may be responsible for inducing the filamentous phenotype
in S. Typhimurium-pEGFP. To test this hypothesis, the fl
ori in pEGFP was replaced with lacZ from pUCI9 to give
rise to pEGFP(-f1), which no longer contained the f1 ori, but
maintained the functional elements to enable bactofection
(Supplementary Fig. S1). This plasmid was then transformed
into SL7207 (SL-pEGFP(-f1)) and the morphology of the
bacteria was assessed. Light microscopy imaging of Gram-
stained SL-pEGFP(-f1) demonstrated that this plasmid did
not induce a filamentous phenotype (Fig. 5a). The mean cell
lengths of the wild type and SL-pEGFP(-fl) were sig-
nificantly different from those of SL-pEGFP cultures
(Fig. 5b). Growth rate was also increased in SL-pEGFP(-f1)
compared to SL-pEGFP, while at ODg of 0.6 there was a
significant increase in recovery of CFUs from SL-pEGFP
(-f1) cultures indicating that filamentation had decreased
compared to SL-pEGFP (Fig. 5c, d). Finally, there was a
significant increase in invasion of MDA-MB-231 cells by
the SL-pEGFP(-fl) strain indicating that virulence of this
strain had been restored by replacement of the fl ori
(Fig. 5e). As shown previously (Fig. 3c), transformation of
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Fig. 5 Removal of the f1 ori removes the filamentous phenotype and
improves invasion. Wild type SL7207, SL-pEGFP and SL-pEGFP(-f1)
were compared for morphology (a); average length (b); growth rate
(c); biomass at ODgggp, 0.6 (d); and capacity to invade MDA-MB-231
tumour cells (e). CFU counts of SL7207 and SL-pEGFP recovered
from MDA-MB-231 cells at 2h post infection. f Quantification of

pEGFP into JH3010, a SPI-1 reporter strain resulted
in decreased SPI-1 expression. Subsequently, removal of the
fl ori restored SPI-1 expression to near wild type JH3010
levels (Fig. 5f). Taken together this data suggested that the
fl ori was responsible for inducing the filamentous pheno-
type in the S. Typhimurium cultures and that its replacement
could abrogate this effect.

To further demonstrate the role of the f1 ori, an alter-
native fl ori containing plasmid, pLuc, was investigated
alongside plasmids which determined any potential roles for
other features of pEGFP including; the EGFP transgene, the
plasmid ori and the antibiotic resistance cassette. These
features had been suggested to induce bacterial stress which
may lead to filamentation [55-57]. However, only bacteria
carrying an f1 ori containing plasmid were filamentous with
pLuc containing bacteria displaying both a similar pheno-
type and cell length to SL-pEGFP (Supplementary Fig. S2).

Lastly, to ensure that removal of the fl ori improved the
bactofection potential of SL-pEGFP(-f1), MDA-MB-231

SPRINGER NATURE

bacterial invasion through SPI-1 expression using the SPI-1 reporter
strain, JH3010. JH3010 was transformed with pEGFP and pEGFP
(-f1), respectively. Error bars SEM. Statistical analyses performed
using One Way Anova where p <0.05%; p<0.01**; p<0.001%**,
Results displayed are the average of three independent biological
replicates

cells were again infected with SL.72027, SL-pEGFP and
SL-pEGFP(-f1). Increased bactofection was noted in cells
infected with SL-pEGFP(-fl1) (19.8 +3.25% Standard
deviation) compared to SL-pEGFP (12 +4.58% Standard
deviation) (Fig. 6). This increase indicated that the fl ori
was responsible for the reduction in SL-pEGFP
bactofection.

Discussion

The use of bacteria as gene delivery vehicles is an area of
growing research interest with bacterial genera such as
Escherichia, Listeria, and Salmonella all capable of carry-
ing and delivering genetic material to target cells [33-36].
The ability of bacteria to deliver genetic material to
eukaryotic systems has been demonstrated in vivo in mul-
tiple pathologies including cystic fibrosis and cancer
[11, 19, 20, 22, 24, 43]. While bactofection as a potential
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Fig. 6 Removal of the fl1 ori increases the bactofection capacity of
S. Typhimurium-pEGFP. MDA-MB-231 cells were treated with PBS
(a); or infected with SL7207 (b); SL-EGFP (c); or SL-pEGFP(-f1) (d)
at an MOI of 100:1, for 2 h before fixation with 4% PFA. Subse-
quently, cells were immunostained using DAPI to stain nuclear

therapeutic strategy increases in popularity, the exact
mechanisms underlying its success in delivering genetic
material to host cells are still unclear [30, 31]. Of all of the
bacterial species used for bactofection that have been
reported in the literature, Salmonella spp. are arguably the
best characterised. Salmonella has been employed to deliver
a variety of eukaryotic genes to tumours in vivo including
apoptosis-associated genes Second mitochondrial derived
activator of caspases (SMAC) and TNF-related apoptosis
inducing ligand (TRAIL), as well as for cytokine gene
therapy in subcutaneous tumour mouse models [11, 18, 37,

Phalloidin

Composite

material and rhodamine-phalloidin to stain the actin cytoskeleton.
Percentage of GFP positive cells were quantified in ten individual
images across three biological replicates (e). Scale bars 50 um. Sta-
tistical analyses performed using One Way Anova where p <0.05%

38]. These transgenes are borne on plasmids that can be
released for uptake upon entry into the target mammalian
cell. While these plasmids have been investigated in an
attempt to understand the drivers behind mammalian cell
uptake of the bacterial carried DNA, as we demonstrate here
the makeup of these plasmids can also seriously impact the
bactofection capability of S. Typhimurium.

For this study, S. Typhimurium strains were transformed
with the eukaryotic expression vector, pEGFP, a plasmid
previously reported as being capable of being transferred
into eukaryotic cells, resulting in subsequent EGFP
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expression [43, 58, 59]. However, our initial experiments
found that SL-pEGFP induced a filamentous phenotype that
was apparent at high magnification (Fig. 1a). This pheno-
type was apparent in both cancer targeting bactofection
strains (SL7207 and VNP20009) and wild type S. Typhi-
murium (LT2) and did not appear to be strain specific
(Fig. 2a, b). We could find no prior reports of a eukaryotic
expression vector inducing filamentation in bacteria. It has
been reported that certain mutations in a pBR332 plasmid
can induce invasion defects in S. Typhimurium, but this was
attributed to plasmid architecture [57]. The degree of fila-
mentation was quite striking (Fig. 1¢) with the mean length
of the transformed SL7207 cultures more than three times
that of the wild type. Additionally 39.58% (£10.82% stan-
dard deviation) of each culture could be classed as fila-
mentous based on a previous classification system whereby
bacteria greater than three cell lengths (6 pm) were deter-
mined to be filamentous [45]. A factor likely to be critical to
the lack of prior reporting of this phenotype is that E. coli
strains transformed with pEGFP did not exhibit filamenta-
tion (Fig. 2c—e). Given the majority of cloning work with
mammalian vectors such as pEGFP occurs in E. coli
laboratory strains, such as the E. coli K12 strain which did
not display a filamentous phenotype here, this may explain
why this phenomenon went unnoticed. Filamentation was
also absent in commensal and pathogenic E. coli strains
indicating that immunity to filamentation again appears to
occur across a wide range of E. coli.

Given the widespread use of pEGFP, the potential for
this phenotype to be linked to other plasmids was investi-
gated further. Our analysis led us to focus on the fl ori a
feature of pEGFP and common to plasmids such as
pBluescript, pGEM and pcDNA3.1. Plasmids containing
the fl ori induced filamentation in S. Typhimurium while
those without it exhibited no filamentous phenotype (Sup-
plementary Fig. S2). To our knowledge this phenotype has
not previously been reported with fl ori-containing plas-
mids. The purpose of the f1 ori in the pEGFP plasmid is to
facilitate ssSDNA replication and phage packaging [53, 60].
The f1 ori is therefore likely an artefact due to the prior use
of eukaryotic expression vectors as means to introduce
mutations into genes on the vector upon induction with the
appropriate phage. To activate the fl ori, it must first be
nicked by an endonuclease, Gp2 protein of the filamentous
phage which recognises a consensus sequence in the origin
sequence and cleaves a single strand to allow the initiation
of ssDNA packaging by the phage [61]. Therefore, the
presence of the f1 ori may lead to the generation of ssDNA
by the Gp2 protein associated with the filamentous phage
elements in S. fyphimurium. Crucially the production of
ssDNA is sufficient to activate the SOS stress response as
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seen here in SL-pEGFP. This stress response, induced by
the cleavage of the LexA repressor, then allows for the SOS
transcriptional programme to be activated [62]. The cul-
mination of this transcriptional programme is the arrest of
FtsZ oligomerisation and septation during cell division [63].
Septational arrest subsequently results in filamentation, with
nuclear staining clearly depicting multiple nuclei along a
single filamentous bacterium, as seen in SL-pEGFP (Fig. 4).

To overcome filamentation in SL-pEGFP we substituted
the f1 ori with the lacZ gene (Supplementary Fig. S2),
significantly reducing the filamentous phenotype. After f1
ori removal bacteria carrying the new plasmid became
increasingly invasive and a significant increase in bacto-
fection of MDA-MB-231 cells was observed (Fig. 6). While
other constituents of the plasmid, such as the transgene,
other oris and resistance cassettes, were also examined none
were seen to induce the filamentous phenotype. These have
previously been implicated in stress induction in bacteria
but none were seen to be involved in the phenotype
described here [55-57].

Given the f1 ori is common to many plasmids, the results
described here have important implications for future stu-
dies where bacterial carriage of plasmids is required, and for
past studies where such plasmids have been used for bac-
tofection. Overall, this study indicates that while plasmids
are a crucial tool in manipulating and equipping bacteria for
various purposes, the burden they can often place on bac-
terial fitness, and the effects this may have on resulting data
and its interpretation, are still incompletely understood.
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