12 research outputs found

    Recoherence in the entanglement dynamics and classical orbits in the N-atom Jaynes-Cummings model

    Get PDF
    The rise in linear entropy of a subsystem in the N-atom Jaynes-Cummings model is shown to be strongly influenced by the shape of the classical orbits of the underlying classical phase space: we find a one-to-one correspondence between maxima (minima) of the linear entropy and maxima (minima) of the expectation value of atomic excitation J_z. Since the expectation value of this operator can be viewed as related to the orbit radius in the classical phase space projection associated to the atomic degree of freedom, the proximity of the quantum wave packet to this atomic phase space borderline produces a maximum rate of entanglement. The consequence of this fact for initial conditions centered at periodic orbits in regular regions is a clear periodic recoherence. For chaotic situations the same phenomenon (proximity of the atomic phase space borderline) is in general responsible for oscillations in the entanglement properties.Comment: 15 pages (text), 6 figures; to be published in Physical Review

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Fano resonances in the conductance of quantum dots with mixed dynamics

    No full text
    We study the conductance fluctuations of an open quantum dot with underlying mixed dynamics. In addition to smooth conductance fluctuations, typical of chaotic quantum dots, we observe the occurrence of many sharp conductance peaks. Those are associated with localized states in the quantum dot and display a variety of Fano shape resonances. We show that the Fano q parameter in the presence of time-reversal symmetry is, in general, complex. We discuss the origin of the different Fano parameters and present a numerical study to support our theory.771

    PARTICLE-SPIN COUPLING IN A CHAOTIC SYSTEM - LOCALIZATION-DELOCALIZATION IN THE HUSIMI DISTRIBUTIONS

    No full text
    The wave functions of the Dicke Hamiltonian, describing a spin coupled to a bosonic mode, are studied via Husimi distributions. A classical analogue of this system is also obtained. For several energy ranges studied, the Husimi distribution of the wave functions show the scar of simple periodic orbits when projected into the boson phase space. Surprisingly, these same distributions, when projected into the spin phase space, are spread through large regions. An explanation of this fact is given in terms of semiclassical theory and border effects associated with nonsemiclassical behaviour.15212513
    corecore