25 research outputs found

    LHC and B physics probes of neutrinoless double beta decay in supersymmetry without R-parity

    Get PDF
    In the event of an observation of neutrinoless double beta decay, a relevant question would be: what lepton number violating physics is responsible for the decay? The exchange of Majorana neutrinos and/or supersymmetric particles may contribute. We point out that measurements of supersymmetric signals at the LHC, including single slepton production, could be used to help bound some supersymmetric processes contributing to neutrinoless double beta decay. LHC information about the supersymmetric spectrum could be combined with Bd-Bd bar mixing data in order to bound a competing neutrinoless double beta decay process involving sbottom exchange

    Large hadron collider probe of supersymmetric neutrinoless double-beta-decay mechanism.

    Get PDF
    In the minimal supersymmetric extension to the standard model, a nonzero lepton number violating coupling lambda(111);(') predicts both neutrinoless double-beta-decay and resonant single slepton production at the LHC. We show that, in this case, if neutrinoless double beta decay is discovered in the next generation of experiments, there exist good prospects to observe single slepton production at the LHC. Neutrinoless double beta decay could otherwise result from a different source (such as a nonzero Majorana neutrino mass). Resonant single slepton production at the LHC can therefore discriminate between the lambda(111);(') neutrinoless double-beta-decay mechanism and others

    Multi-Parton Interactions at the LHC

    Get PDF
    We review the recent progress in the theoretical description and experimental observation of multiple parton interactions. Subjects covered include experimental measurements of minimum bias interactions and of the underlying event, models of soft physics implemented in Monte Carlo generators, developments in the theoretical description of multiple parton interactions and phenomenological studies of double parton scattering. This article stems from contributions presented at the Helmholtz Alliance workshop on "Multi-Parton Interactions at the LHC", DESY Hamburg, 13-15 September 2010.Comment: 68 page

    Prevalence of celiac disease in multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Celiac disease (CD) is a common systemic disease related to a permanent intolerance to gluten and is often associated with different autoimmune and neurological diseases. Its mean prevalence in the general population is 1-2% worldwide. Our aim was to study the prevalence of celiac disease in a prospective series of Multiple Sclerosis (MS) patients and their first-degree relatives.</p> <p>Methods</p> <p>We analyzed the prevalence of serological, histological and genetic CD markers in a series of 72 MS patients and in their 126 first-degree relatives, compared to 123 healthy controls.</p> <p>Results</p> <p>Tissue IgA-anti-transglutaminase-2 antibodies were positive in 7 MS patients (10%), compared to 3 healthy controls (2.4%) (p < 0.05). OR: 5.33 (CI-95%: 1.074-26.425). No differences were found in HLA-DQ2 markers between MS patients (29%) and controls (26%) (NS).</p> <p>We detected mild or moderate villous atrophy (Marsh III type) in duodenal biopsies, in 8 MS patients (11.1%). We also found a high proportion of CD among first-degree relatives: 23/126 (32%). Several associated diseases were detected, mainly dermatitis 41 (57%) and iron deficiency anemia in 28 (39%) MS patients. We also found in them, an increased frequency of circulating auto-antibodies such as anti-TPO in 19 (26%), ANA in 11 (15%) and AMA in 2 (3%).</p> <p>Conclusions</p> <p>We have found an increased prevalence of CD in 8 of the 72 MS patients (11.1%) and also in their first-degree relatives (23/126 [32%]). Therefore, increased efforts aimed at the early detection and dietary treatment of CD, among antibody-positive MS patients, are advisable.</p

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2‱−, generate Al superoxides [Al(O2‱)](H2O5)]+ 2. Semireduced AlO2‱ radicals deplete mitochondrial Fe and promote generation of H2O2, O2 ‱ − and OH‱. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Addendum: Observation of double charm production involving open charm in pp collisions at s \sqrt{s} = 7 TeV

    Full text link
    corecore