32 research outputs found

    Quantitative nanoscale vortex-imaging using a cryogenic quantum magnetometer

    Get PDF
    Microscopic studies of superconductors and their vortices play a pivotal role in our understanding of the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray-fields enable access to fundamental aspects of superconductors such as nanoscale variations of superfluid densities or the symmetry of their order parameter. However, experimental tools, which offer quantitative, nanoscale magnetometry and operate over the large range of temperature and magnetic fields relevant to address many outstanding questions in superconductivity, are still missing. Here, we demonstrate quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBCO, using a scanning quantum sensor in form of a single Nitrogen-Vacancy (NV) electronic spin in diamond. The sensor-to-sample distance of ~10nm we achieve allows us to observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, while we find excellent quantitative agreement with Pearl's analytic model. Our experiments yield a non-invasive and unambiguous determination of the system's local London penetration depth, and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning NV magnetometry.Comment: Main text (5 pages, 4 figures) plus supplementary material (5 pages, 6 figures). Comments welcome. Further information under http://www.quantum-sensing.c

    Multi-wave coherent control of a solid-state single emitter

    Get PDF
    The authors acknowledge support by the European Research Council Starting Grant 'PICSEN' contract no. 306387.Coherent control of individual two-level systems (TLSs) is at the basis of any implementation of quantum information. An impressive level of control is now achieved using nuclear, vacancies and charge spins. Manipulation of bright exciton transitions in semiconductor quantum dots (QDs) is less advanced, principally due to the sub-nanosecond dephasing. Conversely, owing to their robust coupling to light, one can apply tools of nonlinear spectroscopy to achieve all-optical command. Here, we report on the coherent manipulation of an exciton via multi-wave mixing. Specifically, we employ three resonant pulses driving a single InAs QD. The first two induce a four-wave mixing (FWM) transient, which is projected onto a six-wave mixing (SWM) depending on the delay and area of the third pulse, in agreement with analytical predictions. Such a switch enables to demonstrate the generation of SWM on a single emitter and to engineer the spectro-temporal shape of the coherent response originating from a TLS. These results pave the way toward multi-pulse manipulations of solid state qubits via implementing the NMR-like control schemes in the optical domain.PostprintPeer reviewe

    Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis

    Get PDF
    Craniosynostosis (CS) is a frequent congenital anomaly featuring the premature fusion of 1 or more sutures of the cranial vault. Syndromic cases, featuring additional congenital anomalies, make up 15% of CS. While many genes underlying syndromic CS have been identified, the cause of many syndromic cases remains unknown. We performed exome sequencing of 12 syndromic CS cases and their parents, in whom previous genetic evaluations were unrevealing. Damaging de novo or transmitted loss of function (LOF) mutations were found in 8 genes that are highly intolerant to LOF mutation (P = 4.0 × 10^{-8}); additionally, a rare damaging mutation in SOX11, which has a lower level of intolerance, was identified. Four probands had rare damaging mutations (2 de novo) in TFAP2B, a transcription factor that orchestrates neural crest cell migration and differentiation; this mutation burden is highly significant (P = 8.2 × 10^{-12}). Three probands had rare damaging mutations in GLI2, SOX11, or GPC4, which function in the Hedgehog, BMP, and Wnt signaling pathways; other genes in these pathways have previously been implicated in syndromic CS. Similarly, damaging de novo mutations were identified in genes encoding the chromatin modifier KAT6A, and CTNNA1, encoding catenin α-1. These findings establish TFAP2B as a CS gene, have implications for assessing risk to subsequent children in these families, and provide evidence implicating other genes in syndromic CS. This high yield indicates the value of performing exome sequencing of syndromic CS patients when sequencing of known disease loci is unrevealing

    Holographic Calculations of Renyi Entropy

    Full text link
    We extend the approach of Casini, Huerta and Myers to a new calculation of the Renyi entropy of a general CFT in d dimensions with a spherical entangling surface, in terms of certain thermal partition functions. We apply this approach to calculate the Renyi entropy in various holographic models. Our results indicate that in general, the Renyi entropy will be a complicated nonlinear function of the central charges and other parameters which characterize the CFT. We also exhibit the relation between this new thermal calculation and a conventional calculation of the Renyi entropy where a twist operator is inserted on the spherical entangling surface. The latter insight also allows us to calculate the scaling dimension of the twist operators in the holographic models.Comment: 71 pages, 6 figure
    corecore