1,118 research outputs found
Bioconjugates of Glucose Oxidase and Gold Nanorods Based on Electrostatic Interaction with Enhanced Thermostability
Bioconjugates made up of an enzyme and gold nanorods (GNRs) were fabricated by electrostatic interactions (layer-by-layer method, LBL) between anionic glucose oxidase (GOD) and positively charged GNRs. The assembled processes were monitored by UV–Vis spectra, zeta potential measurements, and transmission electron microscopy. The enzyme activity assays of the obtained bioconjugates display a relatively enhanced thermostability behavior in contrast with that of free enzyme. Free GOD in solution only retains about 22% of its relative activity at 90 °C. Unexpectedly, the immobilized GOD on GNRs still retains about 39.3% activity after the same treatment. This work will be of significance for the biologic enhancement using other kinds of anisotropic nanostructure and suggests a new way of enhancing enzyme thermostability using anisotropic metal nanomaterials
NLSP Gluino Search at the Tevatron and early LHC
We investigate the collider phenomenology of gluino-bino co-annihilation
scenario both at the Tevatron and 7 TeV LHC. This scenario can be realized, for
example, in a class of realistic supersymmetric models with non-universal
gaugino masses and t-b-\tau Yukawa unification. The NLSP gluino and LSP bino
should be nearly degenerate in mass, so that the typical gluino search channels
involving leptons or hard jets are not available. Consequently, the gluino can
be lighter than various bounds on its mass from direct searches. We propose a
new search for NLSP gluino involving multi-b final states, arising from the
three-body decay \tilde{g}-> b\bar{b}\tilde{\chi}_1^0. We identify two
realistic models with gluino mass of around 300 GeV for which the three-body
decay is dominant, and show that a 4.5 \sigma observation sensitivity can be
achieved at the Tevatron with an integrated luminosity of 10 fb^{-1}. For the 7
TeV LHC with 50 pb^{-1} of integrated luminosity, the number of signal events
for the two models is O(10), to be compared with negligible SM background
event.Comment: 14 pages, 4 figures and 3 tables, minor modifications made and
accepted for publication in JHE
Metal-Dependent Cytotoxic and Kinesin Spindle Protein Inhibitory Activity of Ru, Os, Rh, and Ir Half-Sandwich Complexes of Ispinesib-Derived Ligands
Ispinesib is a potent inhibitor of kinesin spindle protein (KSP), which has been identified as a promising target for antimitotic anticancer drugs. Herein, we report the synthesis of half-sandwich complexes of Ru, Os, Rh, and Ir bearing the ispinesib-derived N,N-bidentate ligands (R)- and (S)-2-(1-amino-2-methylpropyl)-3-benzyl-7-chloroquinazolin-4(3H)-one and studies on their chemical and biological properties. Using the enantiomerically pure (R)- and (S)-forms of the ligand, depending on the organometallic moiety, either the SM,R or RM,S diastereomers, respectively, were observed in the molecular structures of the Ru- and Os(cym) (cym = η6-p-cymene) compounds, whereas the RM,R or SM,S diastereomers were found for the Rh- and Ir(Cp*) (Cp* = η5-pentamethylcyclopentadienyl) derivatives. However, density functional theory (DFT) calculations suggest that the energy difference between the diastereomers is very small, and therefore a mixture of both will be present in solution. The organometallics exhibited varying antiproliferative activity in a series of human cancer cell lines, with the complexes featuring the (R)-enantiomer of the ligand being more potent than the (S)-configured counterparts. Notably, the Rh and Ir complexes demonstrated high KSP inhibitory activity, even at 1 nM concentration, which was independent of the chirality of the ligand, whereas the Ru and especially the Os derivatives were much less active
Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells
INTRODUCTION: CCN6/WISP3 belongs to the CCN (Cyr61, CTGF, Nov) family of genes that contains a conserved insulin-like growth factor (IGF) binding protein motif. CCN6 is a secreted protein lost in 80% of the aggressive inflammatory breast cancers, and can decrease mammary tumor growth in vitro and in vivo. We hypothesized that inhibition of CCN6 might result in the loss of a growth regulatory function that protects mammary epithelial cells from the tumorigenic effects of growth factors, particularly IGF-1. METHOD: We treated human mammary epithelial (HME) cells with a CCN6 hairpin short interfering RNA. RESULTS: CCN6-deficient cells showed increased motility and invasiveness, and developed features of epithelial-mesenchymal transition (EMT). Inhibition of CCN6 expression promoted anchorage-independent growth of HME cells and rendered them more responsive to the growth effects of IGF-1, which was coupled with the increased phosphorylation of IGF-1 receptor and insulin receptor substrate-1 (IRS-1). CONCLUSION: Specific stable inhibition of CCN6 expression in HME cells induces EMT, promotes anchorage-independent growth, motility and invasiveness, and sensitizes mammary epithelial cells to the growth effects of IGF-1
Standardised Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD): study protocol for establishing a core outcome set in polycystic kidney disease
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially life threatening inherited kidney disease and is responsible for 5-10% of cases of end-stage kidney disease (ESKD). Cystic kidneys may enlarge up to 20 times the weight of a normal kidney due to the growth of renal cysts, and patients with ADPKD have an increased risk of morbidity, premature mortality, and other life-time complications including renal and hepatic cyst and urinary tract infection, intracranial aneurysm, diverticulosis, and kidney pain which impair quality of life. Despite some therapeutic advances and the growing number of clinical trials in ADPKD, the outcomes that are relevant to patients and clinicians, such as symptoms and quality of life, are infrequently and inconsistently reported. This potentially limits the contribution of trials to inform evidence-based decision-making. The Standardised Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD) project aims to establish a consensus-based set of core outcomes for trials in PKD (with an initial focus on ADPKD but inclusive of all stages) that patients and health professionals identify as critically important. METHODS: The five phases of SONG-PKD are: a systematic review to identify outcomes that have been reported in existing PKD trials; focus groups with nominal group technique with patients and caregivers to identify, rank, and describe reasons for their choices; qualitative stakeholder interviews with health professionals to elicit individual values and perspectives on outcomes for trials involving patients with PKD; an international three-round Delphi survey with all stakeholder groups (including patients, caregivers, healthcare providers, policy makers, researchers, and industry) to gain consensus on critically important core outcome domains; and a consensus workshop to review and establish a set of core outcome domains and measures for trials in PKD. DISCUSSION: The SONG-PKD core outcome set is aimed at improving the consistency and completeness of outcome reporting across ADPKD trials, leading to improvements in the reliability and relevance of trial-based evidence to inform decisions about treatment and ultimately improve the care and outcomes for people with ADPKD
A Gapless Hard Wall: Magnetic Catalysis in Bulk and Boundary
We study various aspects of fermions and their chiral condensates, both in
the bulk of AdS4 spacetime and in the dual boundary theory. For the most part,
we focus on a geometry with an infra-red hard wall. We show that, contrary to
common lore, there exist boundary conditions in which the hard wall gives rise
to a discrete, but gapless, fermionic spectrum. In such a setting, the presence
of a magnetic field induces a bulk fermion condensate which spontaneously
breaks CP invariance. We develop the holographic dictionary between composite
operators and show that this bulk condensate has the interpretation of boundary
magnetic catalysis involving a double-trace operator. Finally, we explain how
one can replace the hard wall with bulk magnetic monopoles. In such a
framework, magnetic catalysis can be viewed as a consequence of the
Callan-Rubakov effect.Comment: 43 pages. v2: reference adde
Recombinant Expression, Purification, and Functional Characterisation of Connective Tissue Growth Factor and Nephroblastoma-Overexpressed Protein
The CCN family of proteins, especially its prominent member, the Connective tissue growth factor (CTGF/CCN2) has been identified as a possible biomarker for the diagnosis of fibrotic diseases. As a downstream mediator of TGF-β1 signalling, it is involved in tissue scarring, stimulates interstitial deposition of extracellular matrix proteins, and promotes proliferation of several cell types. Another member of this family, the Nephroblastoma-Overexpressed protein (NOV/CCN3), has growth-inhibiting properties. First reports further suggest that these two CCN family members act opposite to each other in regulating extracellular matrix protein expression and reciprocally influence their own expression when over-expressed. We have established stable HEK and Flp-In-293 clones as productive sources for recombinant human CCN2/CTGF. In addition, we generated an adenoviral vector for recombinant expression of rat NOV and established protocols to purify large quantities of these CCN proteins. The identity of purified human CCN2/CTGF and rat CCN3/NOV was proven by In-gel digest followed by ESI-TOF/MS mass spectrometry. The biological activity of purified proteins was demonstrated using a Smad3-sensitive reporter gene and BrdU proliferation assay in permanent cell line EA•hy 926 cells. We further demonstrate for the first time that both recombinant CCN proteins are N-glycosylated
Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine
In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown
Synthesis of Indium Nanowires by Galvanic Displacement and Their Optical Properties
<p>Abstract</p> <p>Single crystalline indium nanowires were prepared on Zn substrate which had been treated in concentrated sulphuric acid by galvanic displacement in the 0.002 mol L<sup>−1</sup>In<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>-0.002 mol L<sup>−1</sup>SeO<sub>2</sub>-0.02 mol L<sup>−1</sup>SDS-0.01 mol L<sup>−1</sup>citric acid aqueous solution. The typical diameter of indium nanowires is 30 nm and most of the nanowires are over 30 μm in length. XRD, HRTEM, SAED and structural simulation clearly demonstrate that indium nanowires are single-crystalline with the tetragonal structure, the growth direction of the nanowires is along [100] facet. The UV-Vis absorption spectra showed that indium nanowires display typical transverse resonance of SPR properties. The surfactant (SDS) and the pretreatment of Zn substrate play an important role in the growth process. The mechanism of indium nanowires growth is the synergic effect of treated Zn substrate (hard template) and SDS (soft template).</p
- …