8 research outputs found

    Variation in plasma calcium analysis in primary care in Sweden - a multilevel analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary hyperparathyroidism (pHPT) is a common disease that often remains undetected and causes severe disturbance especially in postmenopausal women. Therefore, national recommendations promoting early pHPT detection by plasma calcium (P-Ca) have been issued in Sweden. In this study we aimed to investigate variation of P-Ca analysis between physicians and health care centres (HCCs) in primary care in county of Skaraborg, Sweden.</p> <p>Methods</p> <p>In this cross sectional study of patients' records during 2005 we analysed records from 154 629 patients attending 457 physicians at 24 HCCs. We used multilevel logistic regression analysis (MLRA) and adjusted for patient, physician and HCC characteristics. Differences were expressed as median odds ratio (MOR).</p> <p>Results</p> <p>There was a substantial variation in number of P-Ca analyses between both HCCs (MOR<sub>HCC </sub>1.65 [1.44-2.07]) and physicians (MOR<sub>physician </sub>1.95 [1.85-2.08]). The odds for a P-Ca analysis were lower for male patients (OR 0.80 [0.77-0.83]) and increased with the number of diagnoses (OR 25.8 [23.5-28.5]). Sex of the physician had no influence on P-Ca test ordering (OR 0.93 [0.78-1.09]). Physicians under education ordered most P-Ca analyses (OR 1.69 [1.35-2.24]) and locum least (OR 0.73 [0.57-0.94]). More of the variance was attributed to the physician level than the HCC level. Different mix of patients did not explain this variance between physicians. Theoretically, if a patient were able to change both GP and HCC, the odds of a P-Ca analysis would in median increase by 2.45. Including characteristics of the patients, physicians and HCCs in the MLRA model did not explain the variance.</p> <p>Conclusions</p> <p>The physician level was more important than the HCC level for the variation in P-Ca analysis, but further exploration of unidentified contextual factors is crucial for future monitoring of practice variation.</p

    Primary Hyperparathyroidism Influences the Expression of Inflammatory and Metabolic Genes in Adipose Tissue

    Get PDF
    Background: Primary hyperparathyroidism (PHPT) is characterised by increased production of parathyroid hormone (PTH) resulting in elevated serum calcium levels. The influence on bone metabolism with altered bone resorption is the most studied clinical condition in PHPT. In addition to this, patients with PHPT are at increased risk of non-skeletal diseases, such as impaired insulin sensitivity, arterial hypertension and increased risk of death by cardiovascular diseases (CVD), possibly mediated by a chronic low-grade inflammation. The aim of this study was to investigate whether adipose tissue reflects the low-grade inflammation observed in PHPT patients. Methodology/Principal Findings: Subcutaneous fat tissue from the neck was sampled from 16 non-obese patients with PHPT and from 16 patients operated for benign thyroid diseases, serving as weight-matched controls. RNA was extracted and global gene expression was analysed with Illumina BeadArray Technology. We found 608 differentially expressed genes (q-value,0.05), of which 347 were up-regulated and 261 were down-regulated. Gene ontology analysis showed that PHPT patients expressed increased levels of genes involved in immunity and defense (e.g. matrix metallopeptidase 9, S100 calcium binding protein A8 and A9, CD14, folate receptor 2), and reduced levels of genes involved in metabolic processes. Analysis of transcription factor binding sites present in the differentially expressed genes corroborated the up-regulation of inflammatory processes. Conclusions/Significance: Our findings demonstrate that PHPT strongly influences gene regulation in fat tissue, which may result in altered adipose tissue function and release of pathogenic factors that increase the risk of CVD

    Effect of eplerenone on parathyroid hormone levels in patients with primary hyperparathyroidism: a randomized, double-blind, placebo-controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing evidence suggests the bidirectional interplay between parathyroid hormone and aldosterone as an important mechanism behind the increased risk of cardiovascular damage and bone disease observed in primary hyperparathyroidism. Our primary object is to assess the efficacy of the mineralocorticoid receptor-blocker eplerenone to reduce parathyroid hormone secretion in patients with parathyroid hormone excess.</p> <p>Methods/design</p> <p>Overall, 110 adult male and female patients with primary hyperparathyroidism will be randomly assigned to eplerenone (25 mg once daily for 4 weeks and 4 weeks with 50 mg once daily after dose titration] or placebo, over eight weeks. Each participant will undergo detailed clinical assessment, including anthropometric evaluation, 24-h ambulatory arterial blood pressure monitoring, echocardiography, kidney function and detailed laboratory determination of biomarkers of bone metabolism and cardiovascular disease.</p> <p>The study comprises the following exploratory endpoints: mean change from baseline to week eight in (1) parathyroid hormone(1–84) as the primary endpoint and (2) 24-h systolic and diastolic ambulatory blood pressure levels, NT-pro-BNP, biomarkers of bone metabolism, 24-h urinary protein/albumin excretion and echocardiographic parameters reflecting systolic and diastolic function as well as cardiac dimensions, as secondary endpoints.</p> <p>Discussion</p> <p>In view of the reciprocal interaction between aldosterone and parathyroid hormone and the potentially ensuing target organ damage, the EPATH trial is designed to determine whether eplerenone, compared to placebo, will effectively impact on parathyroid hormone secretion and improve cardiovascular, renal and bone health in patients with primary hyperparathyroidism.</p> <p>Trial registration</p> <p>ISRCTN33941607</p
    corecore