20 research outputs found

    Fractional variational calculus of variable order

    Full text link
    We study the fundamental problem of the calculus of variations with variable order fractional operators. Fractional integrals are considered in the sense of Riemann-Liouville while derivatives are of Caputo type.Comment: Submitted 26-Sept-2011; accepted 18-Oct-2011; withdrawn by the authors 21-Dec-2011; resubmitted 27-Dec-2011; revised 20-March-2012; accepted 13-April-2012; to 'Advances in Harmonic Analysis and Operator Theory', The Stefan Samko Anniversary Volume (Eds: A. Almeida, L. Castro, F.-O. Speck), Operator Theory: Advances and Applications, Birkh\"auser Verlag (http://www.springer.com/series/4850

    Variable order Mittag-Leffler fractional operators on isolated time scales and application to the calculus of variations

    Full text link
    We introduce new fractional operators of variable order on isolated time scales with Mittag-Leffler kernels. This allows a general formulation of a class of fractional variational problems involving variable-order difference operators. Main results give fractional integration by parts formulas and necessary optimality conditions of Euler-Lagrange type.Comment: This is a preprint of a paper whose final and definite form is with Springe

    A network of sky imagers for spatial solar irradiance assessment

    No full text
    202208 bckwVersion of RecordOthersU.S. Environmental Protection Agency; South Coast Air Quality Management DistrictPublishe

    Intra-hour irradiance forecasting techniques for solar power integration : a review

    No full text
    202208 bckwVersion of RecordOthersShenzhen Science and Technology Committee; The Hong Kong Polytechnic UniversityPublishe

    Photovoltaic Plant Output Power Forecast by Means of Hybrid Artificial Neural Networks

    No full text
    The main goal of this chapter is to show the set up a well-defined method to identify and properly train the hybrid artificial neural network both in terms of number of neurons, hidden layers and training set size in order to perform the day-ahead power production forecast applicable to any photovoltaic (PV) plant, accurately. Therefore, this chapter has been addressed to describe the adopted hybrid method (PHANN—Physic Hybrid Artificial Neural Network) combining both the deterministic clear sky solar radiation algorithm (CSRM) and the stochastic artificial neural network (ANN) method in order to enhance the day-ahead power forecast. In the previous works, this hybrid method had been tested on different PV plants by assessing the role of different training sets varying in the amount of data and number of trials, which should be included in the “ensemble forecast.” In this chapter, the main results obtained by applying the above-mentioned procedure specifically referred to the available data of the PV power production of a single PV module are presented
    corecore