1,215 research outputs found

    Cooperation and Contagion in Web-Based, Networked Public Goods Experiments

    Get PDF
    A longstanding idea in the literature on human cooperation is that cooperation should be reinforced when conditional cooperators are more likely to interact. In the context of social networks, this idea implies that cooperation should fare better in highly clustered networks such as cliques than in networks with low clustering such as random networks. To test this hypothesis, we conducted a series of web-based experiments, in which 24 individuals played a local public goods game arranged on one of five network topologies that varied between disconnected cliques and a random regular graph. In contrast with previous theoretical work, we found that network topology had no significant effect on average contributions. This result implies either that individuals are not conditional cooperators, or else that cooperation does not benefit from positive reinforcement between connected neighbors. We then tested both of these possibilities in two subsequent series of experiments in which artificial seed players were introduced, making either full or zero contributions. First, we found that although players did generally behave like conditional cooperators, they were as likely to decrease their contributions in response to low contributing neighbors as they were to increase their contributions in response to high contributing neighbors. Second, we found that positive effects of cooperation were contagious only to direct neighbors in the network. In total we report on 113 human subjects experiments, highlighting the speed, flexibility, and cost-effectiveness of web-based experiments over those conducted in physical labs

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    gViz, a novel tool for the visualization of co-expression networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The quantity of microarray data available on the Internet has grown dramatically over the past years and now represents millions of Euros worth of underused information. One way to use this data is through co-expression analysis. To avoid a certain amount of bias, such data must often be analyzed at the genome scale, for example by network representation. The identification of co-expression networks is an important means to unravel gene to gene interactions and the underlying functional relationship between them. However, it is very difficult to explore and analyze a network of such dimensions. Several programs (Cytoscape, yEd) have already been developed for network analysis; however, to our knowledge, there are no available GraphML compatible programs.</p> <p>Findings</p> <p>We designed and developed gViz, a GraphML network visualization and exploration tool. gViz is built on clustering coefficient-based algorithms and is a novel tool to visualize and manipulate networks of co-expression interactions among a selection of probesets (each representing a single gene or transcript), based on a set of microarray co-expression data stored as an adjacency matrix.</p> <p>Conclusions</p> <p>We present here gViz, a software tool designed to visualize and explore large GraphML networks, combining network theory, biological annotation data, microarray data analysis and advanced graphical features.</p

    Multi-Way Multi-Group Segregation and Diversity Indices

    Get PDF
    Background: How can we compute a segregation or diversity index from a three-way or multi-way contingency table, where each variable can take on an arbitrary finite number of values and where the index takes values between zero and one? Previous methods only exist for two-way contingency tables or dichotomous variables. A prototypical three-way case is the segregation index of a set of industries or departments given multiple explanatory variables of both sex and race. This can be further extended to other variables, such as disability, number of years of education, and former military service. Methodology/Principal Findings: We extend existing segregation indices based on Euclidean distance (square of coefficient of variation) and Boltzmann/Shannon/Theil index from two-way to multi-way contingency tables by including multiple summations. We provide several biological applications, such as indices for age polyethism and linkage disequilibrium. We also provide a new heuristic conceptualization of entropy-based indices. Higher order association measures are often independent of lower order ones, hence an overall segregation or diversity index should be the arithmetic mean of the normalized association measures at all orders. These methods are applicable when individuals selfidentify as multiple races or even multiple sexes and when individuals work part-time in multiple industries. Conclusions/Significance: The policy implications of this work are enormous, allowing people to rigorously test whethe

    Distorted Cognitive Processing in Youth: The Structure of Negative Cognitive Errors and Their Associations with Anxiety

    Get PDF
    The Children’s Negative Cognitive Error Questionnaire (CNCEQ) is commonly used to measure four errors in young people’s thinking, but research has failed to support the factorial validity of the measure. The primary objective of the present study was to examine the factor structure of a refined and extended version of the CNCEQ. Revision of the CNCEQ involved the exclusion of items rated as contaminated, and the addition of items measuring cognitive errors closely associated with anxiety (‘threat conclusion’ and ‘underestimation of the ability to cope’). A secondary objective was to determine the relation between the negative cognitive errors and anxiety. Principal component analysis of data from 481 children and adolescents indicated five distinct negative cognitive error subscales labeled ‘underestimation of the ability to cope’, ‘personalizing without mind reading’, ‘selective abstraction’, ‘overgeneralizing’, and ‘mind reading’ which contained the new ‘threat conclusion’ items. Confirmatory factor analysis in an independent sample of 295 children and adolescents yielded further support for the five-factor solution. All cognitive errors except ‘selective abstraction’ were correlated with anxiety. Multiple regression analysis indicated that the strongest predictors of anxiety were the two subscales containing new items, namely ‘underestimation of the ability to cope’ and ‘mind reading’. The results are discussed with respect to further development of the instrument so as to advance the assessment of distorted cognitive processing in young people with internalizing symptoms
    corecore