32 research outputs found

    Cell death during sepsis: integration of disintegration in the inflammatory response to overwhelming infection

    Full text link
    Sepsis is a major health problem and a leading cause of death worldwide. In recent years, a crescendo of attention has been directed to the mechanisms of cell death that develop during this disease, since these are viewed as important contributors to the proinflammatory and anti-inflammatory responses associated with poor outcome. Here we discuss mechanisms of cell death evident severe bacterial infection and sepsis including necrosis, apoptosis, pyroptosis, and extracellular trap-associated neutrophil death, with a particular emphasis on lymphocyte apoptosis and its contribution to the immunosuppressed phenotype of late sepsis. Individual bacterial pathogens express virulence factors that modulate cell death pathways and influence the sepsis phenotype. A greater knowledge of cell death pathways in sepsis informs the potential for future therapies designed to ameliorate immune dysfunction in this syndrome

    Programmed cell death and its role in inflammation

    Get PDF
    Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases

    MiR-SNPs as markers of toxicity and clinical outcome in Hodgkin Lymphoma patients

    Get PDF
    Background: In recent years, microRNA (miRNA) pathways have emerged as a crucial system for the regulation of tumorogenesis. miR-SNPs are a novel class of single nucleotide polymorphisms that can affect miRNA pathways. Design and Methods: We analyzed eight miR-SNPs by allelic discrimination in 141 patients with Hodgkin lymphoma and correlated the results with treatment-related toxicity, response, disease-free survival (DFS) and overall survival (OS). Results: The KRT81 (rs3660) GG genotype was associated with an increased risk of neurological toxicity (P=0.016), while patients with XPO5 (rs11077) AA or CC genotypes had a higher rate of bleomycin-associated pulmonary toxicity (P=0.048). Both miR-SNPs emerged as independent factors in the multivariate analysis. The XPO5 AA and CC genotypes were also associated with a lower response rate (P=0.036). XPO5 (P=0.039) and TRBP (rs784567) (P=0.022) genotypes emerged as prognostic markers for DFS, and XPO5 was also associated with OS (P=0.033). In the multivariate analysis, only XPO5 emerged as an independent prognostic factor for DFS (HR: 2.622; 95%CI 1.039-6.620; P=0.041). Given the influence of XPO5 and TRBP as individual markers, we then investigated the combined effect of these miR-SNPs. Patients with both the XPO5 AA/CC and TRBP TT/TC genotypes had the shortest DFS (P=0.008) and OS (P=0.008). Conclusion: miR-SNPs can add useful prognostic information on treatment-related toxicity and clinical outcome in Hodgkin lymphoma and can be used to identify patients likely to be chemoresistant or to relapse
    corecore