18 research outputs found

    A Sub-Microscopic Gametocyte Reservoir Can Sustain Malaria Transmission

    Get PDF
    Novel diagnostic tools, including PCR and high field gradient magnetic fractionation (HFGMF), have improved detection of asexual Plasmodium falciparum parasites and especially infectious gametocytes in human blood. These techniques indicate a significant number of people carry gametocyte densities that fall below the conventional threshold of detection achieved by standard light microscopy (LM).To determine how low-level gametocytemia may affect transmission in present large-scale efforts for P. falciparum control in endemic areas, we developed a refinement of the classical Ross-Macdonald model of malaria transmission by introducing multiple infective compartments to model the potential impact of highly prevalent, low gametocytaemic reservoirs in the population. Models were calibrated using field-based data and several numerical experiments were conducted to assess the effect of high and low gametocytemia on P. falciparum transmission and control. Special consideration was given to the impact of long-lasting insecticide-treated bed nets (LLIN), presently considered the most efficient way to prevent transmission, and particularly LLIN coverage similar to goals targeted by the Roll Back Malaria and Global Fund malaria control campaigns. Our analyses indicate that models which include only moderate-to-high gametocytemia (detectable by LM) predict finite eradication times after LLIN introduction. Models that include a low gametocytemia reservoir (requiring PCR or HFGMF detection) predict much more stable, persistent transmission. Our modeled outcomes result in significantly different estimates for the level and duration of control needed to achieve malaria elimination if submicroscopic gametocytes are included.It will be very important to complement current methods of surveillance with enhanced diagnostic techniques to detect asexual parasites and gametocytes to more accurately plan, monitor and guide malaria control programs aimed at eliminating malaria

    Will-o'-the-Wisp: an ancient mystery with extremophile origins?

    No full text
    NoThis paper draws a comparison between the 700-year-old historically reported will-o'-the-wisp phenomenon and the more recent discovery of extremophilic colonization of hostile environments; both have been observed as present in isolated, stressed environmental regions and originating from biological phenomena. However, whereas extremophilic activity can be understood in terms of a survival strategy based upon the synthesis of specific suites of protective biochemicals which are designed to control biogeologically the stressed habitats and to provide protection against the extreme environments, the analytical techniques that have proved so successful for the illumination of these survival strategies of extremophiles and which are now being miniaturized for in-field studies and for extraterrestrial exploration have not been applied to a clarification or evaluation of the phenomenon of will-o'-the-wisp. The reason is simply that the will-o'-the-wispsightings have now disappeared completely. Tantalizingly, all of the most reasonable physico-chemical and biological explanations for the will-o'-the-wisp phenomenon proved to be unsatisfactory in some respect and it is clear that, just as in the case of extremophilic colonization, will-o'-the-wisp would benefit from a modern rigorous analytical study which would produce the data from which the potentially novel biological behaviour could be characterized and which would help a better understanding to be made of our natural world

    Representations of Lie Groups and Special Functions

    No full text
    corecore