32 research outputs found

    Overlaps Between Autism and Language Impairment: Phenomimicry or Shared Etiology?

    Get PDF
    Traditionally, autistic spectrum disorder (ASD) and specific language impairment (SLI) are regarded as distinct conditions with separate etiologies. Yet these disorders co-occur at above chance levels, suggesting shared etiology. Simulations, however, show that additive pleiotropic genes cannot account for observed rates of language impairment in relatives, which are higher for probands with SLI than for those with ASD + language impairment. An alternative account is in terms of ‘phenomimicry’, i.e., language impairment in comorbid cases may be a consequence of ASD risk factors, and different from that seen in SLI. However, this cannot explain why molecular genetic studies have found a common risk genotype for ASD and SLI. This paper explores whether nonadditive genetic influences could account for both family and molecular findings. A modified simulation involving G × G interactions obtained levels of comorbidity and rates of impairment in relatives more consistent with observed values. The simulations further suggest that the shape of distributions of phenotypic trait scores for different genotypes may provide evidence of whether a gene is involved in epistasis

    The influence of hydrological regimes on sex ratios and spatial segregation of the sexes in two dioecious riparian shrub species in northern Sweden

    Get PDF
    River management practices have altered the hydrological regimes of many rivers and also altered the availability of regeneration niches for riparian species. We investigated the impact of changed hydrological regimes on the sex ratios and the Spatial Segregation of the Sexes (SSS) in the dioecious species Salix myrsinifolia Salisb.–phylicifolia L. and S. lapponum L. by studying the free-flowing Vindel River and the regulated Ume River in northern Sweden. We surveyed sex ratios of these species in 12 river reaches on the Vindel River and in 17 reaches on the Ume River. In addition, we surveyed the sex and location above mean river stage of 1,002 individuals across both river systems to investigate the SSS of both species. Cuttings were collected from male and female individuals of S. myrsinifolia–phylicifolia from both rivers and subjected to four different water table regimes in a greenhouse experiment to investigate growth response between the sexes. We found an M/F sex ratio in both river systems similar to the regional norm of 0.62 for S. myrsinifolia–phylicifolia and of 0.42 for S. lapponum. We found no evidence of SSS in either the free-flowing Vindel River or the regulated Ume River. In the greenhouse experiment, hydrological regime had a significant effect on shoot and root dry weight and on root length. Significantly higher shoot dry weights were found in females than in males and significantly different shoot and root dry weights were found between cuttings taken from the two rivers. We concluded that changed hydrological regimes are likely to alter dimensions of the regeneration niche and therefore to influence sex ratios and SSS at an early successional stage, making it difficult to find clear spatial patterns once these species reach maturity and can be sexed

    Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait.</p> <p>Results</p> <p>We analyzed 179 co-isogenic single <it>P[GT1]-</it>element insertion lines of <it>Drosophila melanogaster </it>to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes <it>Merlin </it>and <it>Karl </it>showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic <it>P</it>-element insertion free line). In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes.</p> <p>Conclusion</p> <p>We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in <it>Drosophila</it>. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive to temperature during development. Taken together, our results stress the need to take into account the effect of environmental variation and the dynamics of gene interactions on the genetic architecture of this complex life-history trait.</p

    Salivary gland branching morphogenesis: a quantitative systems analysis of the Eda/Edar/NFκB paradigm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ectodysplasin-A appears to be a critical component of branching morphogenesis. Mutations in mouse <it>Eda </it>or human <it>EDA </it>are associated with absent or hypoplastic sweat glands, sebaceous glands, lacrimal glands, salivary glands (SMGs), mammary glands and/or nipples, and mucous glands of the bronchial, esophageal and colonic mucosa. In this study, we utilized <it>Eda</it><sup><it>Ta </it></sup>(Tabby) mutant mice to investigate how a marked reduction in functional Eda propagates with time through a defined genetic subcircuit and to test the proposition that canonical NFκB signaling is sufficient to account for the differential expression of developmentally regulated genes in the context of <it>Eda </it>polymorphism.</p> <p>Results</p> <p>The quantitative systems analyses do not support the stated hypothesis. For most NFκB-regulated genes, the observed time course of gene expression is nearly unchanged in Tabby (<it>Eda</it><sup><it>Ta</it></sup>) as compared to wildtype mice, as is NFκB itself. Importantly, a subset of genes is dramatically differentially expressed in Tabby (<it>Edar</it>, <it>Fgf8</it>, <it>Shh</it>, <it>Egf</it>, <it>Tgfa</it>, <it>Egfr</it>), strongly suggesting the existence of an alternative Eda-mediated transcriptional pathway pivotal for SMG ontogeny. Experimental and <it>in silico </it>investigations have identified C/EBPα as a promising candidate.</p> <p>Conclusion</p> <p>In Tabby SMGs, upregulation of the Egf/Tgfα/Egfr pathway appears to mitigate the potentially severe abnormal phenotype predicted by the downregulation of Fgf8 and Shh. Others have suggested that the buffering of the phenotypic outcome that is coincident with variant Eda signaling could be a common mechanism that permits viable and diverse phenotypes, normal and abnormal. Our results support this proposition. Further, if branching epithelia use variations of a canonical developmental program, our results are likely applicable to understanding the phenotypes of other branching organs affected by <it>Eda </it>(<it>EDA</it>) mutation.</p

    Big data for bipolar disorder

    Get PDF
    corecore