34 research outputs found

    Potentiation of photodynamic therapy of cancer by complement: the effect of γ-inulin

    Get PDF
    Host response elicited by photodynamic therapy (PDT) of cancerous lesions is a critical contributor to the clinical outcome, and complement system has emerged as its important element. Amplification of complement action was shown to improve tumour PDT response. In search of a clinically relevant complement activator for use as a PDT adjuvant, this study focused on γ-inulin and examined its effects on PDT response of mouse tumours. Intralesional γ-inulin (0.1 mg mouse−1) delivered immediately after PDT rivaled zymosan (potent classical complement activator) in delaying the recurrence of B16BL6 melanomas. This effect of γ-inulin was further enhanced by IFN-γ pretreatment. Tumour C3 protein levels, already elevated after individual PDT or γ-inulin treatments, increased much higher after their combination. With fibrosarcomas MCA205 and FsaR, adjuvant γ-inulin proved highly effective in reducing recurrence rates following PDT using four different photosensitisers (BPD, ce6, Photofrin, and mTHPC). At 3 days after PDT plus γ-inulin treatment, over 50% of cells found at the tumour site were CTLs engaged in killing specific targets via perforin–granzyme pathway. This study demonstrates that γ-inulin is highly effective PDT adjuvant and suggests that by amplifying the activation of complement system, this agent potentiates the development of CTL-mediated immunity against PDT-treated tumours

    Photodynamic Therapy of Tumors Can Lead to Development of Systemic Antigen-Specific Immune Response

    Get PDF
    Background: The mechanism by which the immune system can effectively recognize and destroy tumors is dependent on recognition of tumor antigens. The molecular identity of a number of these antigens has recently been identified and several immunotherapies have explored them as targets. Photodynamic therapy (PDT) is an anti-cancer modality that uses a non-toxic photosensitizer and visible light to produce cytotoxic reactive oxygen species that destroy tumors. PDT has been shown to lead to local destruction of tumors as well as to induction of anti-tumor immune response. Methodology/Principal Findings: We used a pair of equally lethal BALB/c colon adenocarcinomas, CT26 wild-type (CT26WT) and CT26.CL25 that expressed a tumor antigen, β-galactosidase (β-gal), and we treated them with vascular PDT. All mice bearing antigen-positive, but not antigen-negative tumors were cured and resistant to rechallenge. T lymphocytes isolated from cured mice were able to specifically lyse antigen positive cells and recognize the epitope derived from beta-galactosidase antigen. PDT was capable of destroying distant, untreated, established, antigen-expressing tumors in 70% of the mice. The remaining 30% escaped destruction due to loss of expression of tumor antigen. The PDT anti-tumor effects were completely abrogated in the absence of the adaptive immune response. Conclusion: Understanding the role of antigen-expression in PDT immune response may allow application of PDT in metastatic as well as localized disease. To the best of our knowledge, this is the first time that PDT has been shown to lead to systemic, antigen- specific anti-tumor immunity.United States. National Cancer Institute (grant RO1CA/AI838801)United States. National Cancer Institute (grant R01AI050875

    CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells

    Get PDF
    Cancer survival rates decrease in the presence of disseminated disease. However, there are few therapies that are effective at eliminating the primary tumour while providing control of distant stage disease. Photodynamic therapy (PDT) is an FDA-approved modality that rapidly eliminates local tumours, resulting in cure of early disease and palliation of advanced disease. Numerous pre-clinical studies have shown that local PDT treatment of tumours enhances anti-tumour immunity. We hypothesised that enhancement of a systemic anti-tumour immune response might control the growth of tumours present outside the treatment field. To test this hypothesis we delivered PDT to subcutaneous (s.c.) tumours of mice bearing both s.c. and lung tumours and monitored the growth of the untreated lung tumours. Our results demonstrate that PDT of murine tumours provided durable inhibition of the growth of untreated lung tumours. The inhibition of the growth of tumours outside the treatment field was tumour-specific and dependent on the presence of CD8+ T cells. This inhibition was accompanied by an increase in splenic anti-tumour cytolytic activity and by an increase in CD8+ T cell infiltration into untreated tumours. Local PDT treatment led to enhanced anti-tumour immune memory that was evident 40 days after tumour treatment and was independent of CD4+ T cells. CD8+ T cell control of the growth of lung tumours present outside the treatment field following PDT was dependent upon the presence of natural killer (NK) cells. These results suggest that local PDT treatment of tumours lead to induction of an anti-tumour immune response capable of controlling the growth of tumours outside the treatment field and indicate that this modality has potential in the treatment of distant stage disease

    Photodynamic Therapy Can Induce a Protective Innate Immune Response against Murine Bacterial Arthritis via Neutrophil Accumulation

    Get PDF
    Background: Local microbial infections induced by multiple-drug-resistant bacteria in the orthopedic field can be intractable, therefore development of new therapeutic modalities is needed. Photodynamic therapy (PDT) is a promising alternative modality to antibiotics for intractable microbial infections, and we recently reported that PDT has the potential to accumulate neutrophils into the infected site which leads to resolution of the infection. PDT for cancer has long been known to be able to stimulate the innate and adaptive arms of the immune system. Methodology/Principal Findings: In the present study, a murine methicillin-resistant Staphylococcus aureus (MRSA) arthritis model using bioluminescent MRSA and polystyrene microparticles was established, and both the therapeutic (Th-PDT) and preventive (Pre-PDT) effects of PDT using methylene blue as photosensitizer were examined. Although Th-PDT could not demonstrate direct bacterial killing, neutrophils were accumulated into the infectious joint space after PDT and MRSA arthritis was reduced. With the preconditioning Pre-PDT regimen, neutrophils were quickly accumulated into the joint immediately after bacterial inoculation and bacterial growth was suppressed and the establishment of infection was inhibited. Conclusions/Significance: This is the first demonstration of a protective innate immune response against a bacterial pathogen produced by PDT.National Institutes of Health (U.S.) (Grant number R01AI050875

    Nitric oxide production by tumour tissue: impact on the response to photodynamic therapy

    Get PDF
    The role of nitric oxide (NO) in the response to Photofrin-based photodynamic therapy (PDT) was investigated using mouse tumour models characterized by either relatively high or low endogenous NO production (RIF and SCCVII vs EMT6 and FsaR, respectively). The NO synthase inhibitors Nω-nitro- L -arginine (L-NNA) or Nω-nitro- L -arginine methyl ester (L-NAME), administered to mice immediately after PDT light treatment of subcutaneously growing tumours, markedly enhanced the cure rate of RIF and SCCVII models, but produced no obvious benefit with the EMT6 and FsaR models. Laser Doppler flowmetry measurement revealed that both L-NNA and L-NAME strongly inhibit blood flow in RIF and SCCVII tumours, but not in EMT6 and FsaR tumours. When injected intravenously immediately after PDT light treatment, L-NAME dramatically augmented the decrease in blood flow in SCCVII tumours induced by PDT. The pattern of blood flow alterations in tumours following PDT indicates that, even with curative doses, regular circulation may be restored in some vessels after episodes of partial or complete obstruction. Such conditions are conducive to the induction of ischaemia-reperfusion injury, which is instigated by the formation of superoxide radical. The administration of superoxide dismutase immediately after PDT resulted in a decrease in tumour cure rates, thus confirming the involvement of superoxide in the anti-tumour effect. The results of this study demonstrate that NO participates in the events associated with PDT-mediated tumour destruction, particularly in the vascular response that is of critical importance for the curative outcome of this therapy. The level of endogenous production of NO in tumours appears to be one of the determinants of sensitivity to PDT. © 2000 Cancer Research Campaig

    L’indagine macrosismica: metodologia, parametri del terremoto, questioni aperte

    Get PDF
    Subito dopo l’evento del 6 aprile 2009, come di consueto è stata realizzata una lunga e complessa indagine macrosismica, promossa dal gruppo operativo QUEST, che ha avuto inizialmente l’obiettivo di delimitare l’area di danneggiamento, a supporto delle attività di pronto intervento della Protezione Civile, e successivamente quello di classificare nel modo più accurato e capillare possibile, gli effetti prodotti dall’evento, particolarmente nelle aree danneggiate. A questo scopo è stata prodotta una stima utilizzando la scala MCS (Sieberg, 1930); in un secondo momento è stata rifinita l’indagine per una cinquantina di località dell’area maggiormente danneggiata (Is MCS>VII), raccogliendo ed elaborando i dati in termini di scala macrosismica EMS98 (Grünthal, 1998). Per la complessità e la dimensione dei problemi affrontati, questo terremoto ha costituito un banco di prova di grande importanza per la macrosismologia italiana. In questo testo viene descritto il lavoro realizzato, discutendo in particolare alcuni aspetti che hanno messo alla prova le metodologie di indagine tradizionali (sistematiche irregolarità degli insediamenti monitorati, forti divergenze degli scenari di danno rispetto a quelli previsti dalle scale, difficile comparabilità con scenari storici, ecc.) e presentandone i risultati, in relazione ai parametri epicentrali che ne risultano e il loro contributo più diretto alla comprensione complessiva della sismicità dell’area

    Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Get PDF
    Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed

    Induction of Immune Mediators in Glioma and Prostate Cancer Cells by Non-Lethal Photodynamic Therapy

    Get PDF
    BACKGROUND: Photodynamic therapy (PDT) uses the combination of photosensitizing drugs and harmless light to cause selective damage to tumor cells. PDT is therefore an option for focal therapy of localized disease or for otherwise unresectable tumors. In addition, there is increasing evidence that PDT can induce systemic anti-tumor immunity, supporting control of tumor cells, which were not eliminated by the primary treatment. However, the effect of non-lethal PDT on the behavior and malignant potential of tumor cells surviving PDT is molecularly not well defined. METHODOLOGY/PRINCIPAL FINDINGS: Here we have evaluated changes in the transcriptome of human glioblastoma (U87, U373) and human (PC-3, DU145) and murine prostate cancer cells (TRAMP-C1, TRAMP-C2) after non-lethal PDT in vitro and in vivo using oligonucleotide microarray analyses. We found that the overall response was similar between the different cell lines and photosensitizers both in vitro and in vivo. The most prominently upregulated genes encoded proteins that belong to pathways activated by cellular stress or are involved in cell cycle arrest. This response was similar to the rescue response of tumor cells following high-dose PDT. In contrast, tumor cells dealing with non-lethal PDT were found to significantly upregulate a number of immune genes, which included the chemokine genes CXCL2, CXCL3 and IL8/CXCL8 as well as the genes for IL6 and its receptor IL6R, which can stimulate proinflammatory reactions, while IL6 and IL6R can also enhance tumor growth. CONCLUSIONS: Our results indicate that PDT can support anti-tumor immune responses and is, therefore, a rational therapy even if tumor cells cannot be completely eliminated by primary phototoxic mechanisms alone. However, non-lethal PDT can also stimulate tumor growth-promoting autocrine loops, as seen by the upregulation of IL6 and its receptor. Thus the efficacy of PDT to treat tumors may be improved by controlling unwanted and potentially deleterious growth-stimulatory pathways

    L’indagine macrosismica: metodologia, parametri del terremoto, questioni aperte

    Get PDF
    Subito dopo l’evento del 6 aprile 2009, come di consueto è stata realizzata una lunga e complessa indagine macrosismica, promossa dal gruppo operativo QUEST, che ha avuto inizialmente l’obiettivo di delimitare l’area di danneggiamento, a supporto delle attività di pronto intervento della Protezione Civile, e successivamente quello di classificare nel modo più accurato e capillare possibile, gli effetti prodotti dall’evento, particolarmente nelle aree danneggiate. A questo scopo è stata prodotta una stima utilizzando la scala MCS (Sieberg, 1930); in un secondo momento è stata rifinita l’indagine per una cinquantina di località dell’area maggiormente danneggiata (Is MCS>VII), raccogliendo ed elaborando i dati in termini di scala macrosismica EMS98 (Grünthal, 1998). Per la complessità e la dimensione dei problemi affrontati, questo terremoto ha costituito un banco di prova di grande importanza per la macrosismologia italiana. In questo testo viene descritto il lavoro realizzato, discutendo in particolare alcuni aspetti che hanno messo alla prova le metodologie di indagine tradizionali (sistematiche irregolarità degli insediamenti monitorati, forti divergenze degli scenari di danno rispetto a quelli previsti dalle scale, difficile comparabilità con scenari storici, ecc.) e presentandone i risultati, in relazione ai parametri epicentrali che ne risultano e il loro contributo più diretto alla comprensione complessiva della sismicità dell’area.Published49-551.11. TTC - Osservazioni e monitoraggio macrosismico del territorio nazionaleN/A or not JCRope
    corecore