201 research outputs found

    Upgrading biogas with novel composite carbon molecular sieve (CCMS) membranes: Experimental and techno-economic assessment

    Get PDF
    The use of biogas as feedstock for hydrogen production was widely proposed in the literature in the last years as a strategy to reduce anthropogenic carbon emissions. However, its lower heating value compared to natural gas hampers the revamping of existing reforming plants. The use of composite carbon molecular sieve membranes for biogas upgrading (CO2 removal from biogas) was investigated experimentally in this work. In particular, ideal perm-selectivities and permeabilities above the Robeson plot for CO2/CH4 mixtures have been obtained. These membranes show better performances compared to polymeric membranes, which are nowadays commercialized for CO2 separation in natural gas streams. Compared to polymeric membranes, carbon membranes do not show deactivation by plasticization when exposed to CO2, and thus can find industrial application. This work was extended with a techno-economic analysis where carbon membranes are installed in a steam methane reforming plant. Results have been first validated with data from literature and show that the use of biogas increases the costs of hydrogen production to a value of 0.25 €/Nm3 compared to the benchmark technology (0.21 €/Nm3). On the other hand, the use of biogas leads to a decrease in carbon emissions up to 95%, thus the use of biogas for hydrogen production is foreseen as a very interesting alternative to conventional technologies in view of the reduction in the carbon footprint in the novel technologies that are to be installed in the near future

    Cortical Circuitry Associated With Reflex Cardiovascular Control in Humans: Does the Cortical Autonomic Network Speak or Listen During Cardiovascular Arousal

    Get PDF
    Beginning with clinical evidence of fatal cardiac arrhythmias in response to severe stress, in epileptic patients, and following stroke, the role of the cerebral cortex in autonomic control of the cardiovascular system has gained both academic and clinical interest. Studies in anesthetized rodents have exposed the role of several forebrain regions involved in cardiovascular control. The introduction of functional neuroimaging techniques has enabled investigations into the conscious human brain to illuminate the temporal and spatial activation patterns of cortical regions that are involved with cardiovascular control through the autonomic nervous system. This symposia report emphasizes the research performed by the authors to understand the functional organization of the human forebrain in cardiovascular control during physical stressors of baroreceptor unloading and handgrip exercise. The studies have exposed important associations between activation patterns of the insula cortex, dorsal anterior cingulate, and the medial prefrontal cortex and cardiovascular adjustments to physical stressors. Furthermore, these studies provide functional anatomic evidence that sensory signals arising from baroreceptors and skeletal muscle are represented within the insula cortex and the medial prefrontal cortex, in addition to the sensory cortex. Thus, the cortical pathways subserving reflex cardiovascular control integrate viscerosensory inputs with outgoing traffic that modulates the autonomic nervous system. © 2012 Wiley Periodicals, Inc.

    Pathological Changes in Microvascular Morphology, Density, Size and Responses Following Comorbid Cerebral Injury

    Get PDF
    Aberrations in brain microcirculation and the associated increase in blood-brain-barrier (BBB) permeability in addition to neuroinflammation and Aβ deposition observed in Alzheimer’s disease (AD) and ischemia have gained considerable attention recently. However, the role of microvascular homeostasis as a pathogenic substrate to disturbed microperfusion as well as an overlapping etiologic mechanism between AD and ischemia has not been thoroughly explored. In this study, we employ temporal histopathology of cerebral vasculature in a rat model of β-amyloid (Aβ) toxicity and endothelin-1 induced-ischemia (ET1) to investigate the panorama of cerebral pathology and the protein expression on d1, d7, and d28 post-injury. The combination of Aβ and ET1 pathological states leads to an alteration in microvascular anatomy, texture, diameter, density, and protein expression, in addition to disturbed vessel-matrix-connections, inter-compartmental water exchange and basement membrane profile within the lesion epicenter localized in the striatum of Aβ+ET1 brains compared to Aβ and ET1 rats. We conclude that the neural microvascular network, in addition to the neural tissue, is not only sensitive to structural deterioration but also serves as an underlying vascular etiology between ischemia and AD pathologies. Such investigation can provide prospects to appreciate the interrelationships between structure and responses of cerebral microvasculature and to provide a venue for vascular remodeling as a new treatment strategy

    Pediatric Emergency Care Capacity in a Low-Resource Setting: An assessment of district hospitals in Rwanda

    Get PDF
    BACKGROUND: Health system strengthening is crucial to improving infant and child health outcomes in low-resource countries. While the knowledge related to improving newborn and child survival has advanced remarkably over the past few decades, many healthcare systems in such settings remain unable to effectively deliver pediatric advance life support management. With the introduction of the Emergency Triage, Assessment and Treatment plus Admission care (ETAT+)-a locally adapted pediatric advanced life support management program-in Rwandan district hospitals, we undertook this study to assess the extent to which these hospitals are prepared to provide this pediatric advanced life support management. The results of the study will shed light on the resources and support that are currently available to implement ETAT+, which aims to improve care for severely ill infants and children. METHODS: A cross-sectional survey was undertaken in eight district hospitals across Rwanda focusing on the availability of physical and human resources, as well as hospital services organizations to provide emergency triage, assessment and treatment plus admission care for severely ill infants and children. RESULTS: Many of essential resources deemed necessary for the provision of emergency care for severely ill infants and children were readily available (e.g. drugs and laboratory services). However, only 4/8 hospitals had BVM for newborns; while nebulizer and MDI were not available in 2/8 hospitals. Only 3/8 hospitals had F-75 and ReSoMal. Moreover, there was no adequate triage system across any of the hospitals evaluated. Further, guidelines for neonatal resuscitation and management of malaria were available in 5/8 and in 7/8 hospitals, respectively; while those for child resuscitation and management of sepsis, pneumonia, dehydration and severe malnutrition were available in less than half of the hospitals evaluated. CONCLUSIONS: Our assessment provides evidence to inform new strategies to enhance the capacity of Rwandan district hospitals to provide pediatric advanced life support management. Identifying key gaps in the health care system is required in order to facilitate the implementation and scale up of ETAT+ in Rwanda. These findings also highlight a need to establish an outreach/mentoring program, embedded within the ongoing ETAT+ program, to promote cross-hospital learning exchanges

    Motor and Hippocampal Dependent Spatial Learning and Reference Memory Assessment in a Transgenic Rat Model of Alzheimer\u27s Disease with Stroke

    Get PDF
    Alzheimer\u27s disease (AD) is a debilitating neurodegenerative disease that results in neurodegeneration and memory loss. While age is a major risk factor for AD, stroke has also been implicated as a risk factor and an exacerbating factor. The co-morbidity of stroke and AD results in worsened stroke-related motor control and AD-related cognitive deficits when compared to each condition alone. To model the combined condition of stroke and AD, a novel transgenic rat model of AD, with a mutated form of amyloid precursor protein (a key protein involved in the development of AD) incorporated into its DNA, is given a small unilateral striatal stroke. For a model with the combination of both stroke and AD, behavioral tests that assess stroke-related motor control, locomotion and AD-related cognitive function must be implemented. The cylinder task involves a cost-efficient, multipurpose apparatus that assesses spontaneous forelimb motor use. In this task, a rat is placed in a cylindrical apparatus, where the rat will spontaneously rear and contact the wall of the cylinder with its forelimbs. These contacts are considered forelimb motor use and quantified during video analysis after testing. Another cost-efficient motor task implemented is the beam-walk task, which assesses forelimb control, hindlimb control and locomotion. This task involves a rat walking across a wooden beam allowing for the assessment of limb motor control through analysis of forelimb slips, hindlimb slips and falls. Assessment of learning and memory is completed with Morris water maze for this behavioral paradigm. The protocol starts with spatial learning, whereby the rat locates a stationary hidden platform. After spatial learning, the platform is removed and both short-term and long-term spatial reference memory is assessed. All three of these tasks are sensitive to behavioral differences and completed within 28 days for this model, making this paradigm time-efficient and cost-efficient

    Developing and implementing a novel mentorship model (4+ 1) for maternal, newborn and child health in Rwanda

    Get PDF
    BACKGROUND: There are a number of factors that may contribute to high mortality and morbidity of women and newborns in low-income countries. These include a shortage of competent health care providers (HCP) and a lack of sufficient continuous professional development (CPD) opportunities. Strengthening the skills and building the capacity of HCP involved in the provision of maternal, newborn and child health (MNCH) is essential to ensure quality care for mothers, newborns and children. To address this challenge in Rwanda, mentorship of HCPs was identified as an approach that could help build capacity, improve the provision of care and accelerate the reduction in maternal and neonatal mortality and morbidity. In this paper, we describe the development and implementation of a novel mentorship model named Four plus One (4 METHODS: The mentorship model built on the basis of inter-professional collaboration (IPC) was developed in early 2017 through consultations with different key actors. The design phase included refresher courses in specific skills and training course on mentoring. Field visits were conducted in 10 hospitals from June 2017 to February 2020. Hospital management teams (MT) were involved in the development and implementation of this mentorship model to ensure ownership of the program. RESULTS: Upon completion of planned visits to each hospital, a total of 218 HCPs were involved in the process. Reports prepared by mentors upon each mentorship visit and compiled by Training Support and Access Model (TSAM) for MNCH\u27CPD team, highlighted the mothers and newborns who were saved by both mentors and mentees. Also, different logbooks of mentees showed how the capacity of staff was strengthened, thereby suggesting effectiveness of the model. Through different mentorship coordination meetings, the model was much appreciated by the MTs of hospitals, especially the IPC component of the model and confirmed the program \u27effectiveness. CONCLUSION: The initiation of a mentorship model built on IPC together with the involvement of the leadership of the hospital may be the cause effect of reduction of specific mortality and improve MNCH in low resource settings even when there are a limited number of specialists in the health facilities

    Fluctuation of primary motor cortex excitability during cataplexy in narcolepsy

    Get PDF
    Objective Cataplexy is a complicated and dynamic process in narcolepsy type 1 (NT1) patients. This study aimed to clarify the distinct stages during a cataplectic attack and identify the changes of the primary motor cortex (PMC) excitability during these stages. Methods Thirty-five patients with NT1 and 29 healthy controls were recruited to this study. Cataplectic stages were distinguished from a cataplectic attack by video-polysomnogram monitoring. Transcranial magnetic stimulation motor-evoked potential (TMS-MEP) was performed to measure the excitability of PMC during quiet wakefulness, laughter without cataplexy, and each cataplectic stage. Results Based on the video and electromyogram observations, a typical cataplectic attack (CA) process is divided into four stages: triggering (CA1), resisting (CA2), atonic (CA3), and recovering stages (CA4). Compared with healthy controls, NT1 patients showed significantly decreased intracortical facilitation during quiet wakefulness. During the laughter stage, both patients and controls showed increased MEP amplitude compared with quiet wakefulness. The MEP amplitude significantly increased even higher in CA1 and 2, and then dramatically decreased in CA3 accompanied with prolonged MEP latency compared with the laughter stage and quiet wakefulness. The MEP amplitude and latency gradually recovered during CA4. Interpretation This study identifies four stages during cataplectic attack and reveals the existence of a resisting stage that might change the process of cataplexy. The fluctuation of MEP amplitude and MEP latency shows a potential participation of PMC and motor control pathway during cataplexy, and the increased MEP amplitude during CA1 and 2 strongly implies a compensatory mechanism in motor control that may resist or avoid cataplectic attack

    Increased Expression of Simple Ganglioside Species GM2 and GM3 Detected by MALDI Imaging Mass Spectrometry in a Combined Rat Model of A beta Toxicity and Stroke

    Get PDF
    The aging brain is often characterized by the presence of multiple comorbidities resulting in synergistic damaging effects in the brain as demonstrated through the interaction of Alzheimer\u27s disease (AD) and stroke. Gangliosides, a family of membrane lipids enriched in the central nervous system, may have a mechanistic role in mediating the brain\u27s response to injury as their expression is altered in a number of disease and injury states. Matrix-Assisted Laser Desorption Ionization (MALDI) Imaging Mass Spectrometry (IMS) was used to study the expression of A-series ganglioside species GD1a, GM1, GM2, and GM3 to determine alteration of their expression profiles in the presence of beta-amyloid (A beta) toxicity in addition to ischemic injury. To model a stroke, rats received a unilateral striatal injection of endothelin-1 (ET-1) (stroke alone group). To model A beta toxicity, rats received intracerebralventricular (icv) injections of the toxic 25-35 fragment of the A beta peptide (A beta alone group). To model the combination of A beta toxicity with stroke, rats received both the unilateral ET-1 injection and the bilateral icv injections of A beta(25-35) (combined A beta/ET-1 group). By 3 d, a significant increase in the simple ganglioside species GM2 was observed in the ischemic brain region of rats who received a stroke (ET-1), with or without A beta. By 21 d, GM2 levels only remained elevated in the combined A beta/ET-1 group. GM3 levels however demonstrated a different pattern of expression. By 3 d GM3 was elevated in the ischemic brain region only in the combined A beta/ET-1 group. By 21 d, GM3 was elevated in the ischemic brain region in both stroke alone and A beta/ET-1 groups. Overall, results indicate that the accumulation of simple ganglioside species GM2 and GM3 may be indicative of a mechanism of interaction between AD and stroke

    Microglial Inflammation and Cognitive Dysfunction in Comorbid Rat Models of Striatal Ischemic Stroke and Alzheimer\u27s Disease: Effects of Antioxidant Catalase-SKL on Behavioral and Cellular Pathology

    Get PDF
    Ischemic stroke often co-occurs with Alzheimer\u27s disease (AD) leading to a worsened clinical outcome. Neuroinflammation is a critical process implicated in AD and ischemic pathology, associated with cognitive decline. We sought to investigate the combined effects of ischemic stroke induced by endothelin-1 injection in two AD rat models, using motor function, memory and microglial inflammation in the basal forebrain and striatum as readouts. In addition, we sought to determine the effectiveness of the antioxidant biologic CAT-SKL in one of the models. The early AD model employed the bilateral intracerebroventricular injections of the toxic β-amyloid peptide Aβ25–35, the prodromal AD model used the transgenic Fischer 344 rat overexpressing a pathological mutant human amyloid precursor protein. Motor function was assessed using a cylinder, modified sticky tape and beam-walk tasks; learning and memory were tested in the Morris water maze. Microglial activation was examined using immunohistochemistry. Aβ25–35 toxicity and stroke combination greatly increased microglial inflammation in the basal forebrain. Prodromal AD-pathology coupled with ischemia in the transgenic rat resulted in a greater microgliosis in the striatum. Combined transgenic rats showed balance alterations, comorbid Aβ25–35 rats showed a transient sensorimotor deficit, and both demonstrated spatial reference memory deficit. CAT-SKL treatment ameliorated memory impairment and basal forebrain microgliosis in Aβ25–35 rats with stroke. Our results suggest that neuroinflammation could be one of the early processes underlying the interaction of AD with stroke and contributing to the cognitive impairment, and that therapies such as antioxidant CAT-SKL could be a potential therapeutic strategy

    GESTIONE PERIOPERATORIA DEI BAMBINI AFFETTI DA NEUROBLASTOMA E IPERTENSIONE TUMORE-DIPENDENTE: STUDIO DEL GRUPPO ITALIANO DI CHIRURGIA ONCOLOGICA PEDIATRICA (GICOP).

    Get PDF
    Il Neuroblastoma (NB) con sintomatologia ipertensiva riveste un\u2019esigua percentuale dei tumori neuroblastici trattati ogni anno, attualmente in letteratura esistono unicamente due studi (1,2), che riportano un\u2019incidenza di sintomatologia ipertensiva del 10-19% dei casi. Il follow-up dei pazienti studiati risulta breve, inoltre il meccanismo fisiopatologico non \ue8 stato tuttora dimostrato, ipotizzando una combinazione tra la compressione del peduncolo vascolare renale e la secrezione di catecolamine urinarie. Per quanto riguarda il management intra-operatorio, che pu\uf2 risultare difficoltoso a causa di picchi iper\ipotensivi durante la manipolazione della massa, esistono unicamente case reports (3,4). Lo scopo dello studio \ue8 valutare l\u2019approccio diagnostico e la gestione perioperatoria del bambino affetto da NB con sintomatologia ipertensiv
    • …
    corecore