46 research outputs found

    Stat3 Activates the Receptor Tyrosine Kinase Like Orphan Receptor-1 Gene in Chronic Lymphocytic Leukemia Cells

    Get PDF
    BACKGROUND: The receptor tyrosine kinase like orphan receptor (ROR)-1 gene is overexpressed in chronic lymphocytic leukemia (CLL). Because Stat3 is constitutively activated in CLL and sequence analysis revealed that the ROR1 promoter harbors gamma-interferon activation sequence-like elements typically activated by Stat3, we hypothesized that Stat3 activates ROR1. METHODOLOGY/PRINCIPAL FINDINGS: Because IL-6 induced Stat3 phosphorylation and upregulated Ror1 protein levels in MM1 cells, we used these cells as a model. We transfected MM1 cells with truncated ROR1 promoter luciferase reporter constructs and found that IL-6 induced luciferase activity of ROR1-195 and upstream constructs. Co-transfection with Stat3 siRNA reduced the IL-6-induced luciferase activity, suggesting that IL-6 induced luciferase activity by activating Stat3. EMSA and the ChIP assay confirmed that Stat3 binds ROR1, and EMSA studies identified two Stat3 binding sites. In CLL cells, EMSA and ChIP studies determined that phosphorylated Stat3 bound to the ROR1 promoter at those two ROR1 promoter sites, and ChIP analysis showed that Stat3 co-immunoprecipitated DNA of STAT3, ROR1, and several Stat3-regulated genes. Finally, like STAT3-siRNA in MM1 cells, STAT3-shRNA downregulated STAT3, ROR1, and STAT3-regulated genes and Stat3 and Ror1 protein levels in CLL cells. CONCLUSION/SIGNIFICANCE: Our data suggest that constitutively activated Stat3 binds to the ROR1 promoter and activates ROR1 in CLL cells

    The effects of mutant Ras proteins on the cell signalome

    Get PDF
    The genetic alterations in cancer cells are tightly linked to signaling pathway dysregulation. Ras is a key molecule that controls several tumorigenesis-related processes, and mutations in RAS genes often lead to unbiased intensification of signaling networks that fuel cancer progression. In this article, we review recent studies that describe mutant Ras-regulated signaling routes and their cross-talk. In addition to the two main Ras-driven signaling pathways, i.e., the RAF/MEK/ERK and PI3K/AKT/mTOR pathways, we have also collected emerging data showing the importance of Ras in other signaling pathways, including the RAC/PAK, RalGDS/Ral, and PKC/PLC signaling pathways. Moreover, microRNA-regulated Ras-associated signaling pathways are also discussed to highlight the importance of Ras regulation in cancer. Finally, emerging data show that the signal alterations in specific cell types, such as cancer stem cells, could promote cancer development. Therefore, we also cover the up-to-date findings related to Ras-regulated signal transduction in cancer stem cells. © 2020, The Author(s)

    Sequence and Structure Signatures of Cancer Mutation Hotspots in Protein Kinases

    Get PDF
    Protein kinases are the most common protein domains implicated in cancer, where somatically acquired mutations are known to be functionally linked to a variety of cancers. Resequencing studies of protein kinase coding regions have emphasized the importance of sequence and structure determinants of cancer-causing kinase mutations in understanding of the mutation-dependent activation process. We have developed an integrated bioinformatics resource, which consolidated and mapped all currently available information on genetic modifications in protein kinase genes with sequence, structure and functional data. The integration of diverse data types provided a convenient framework for kinome-wide study of sequence-based and structure-based signatures of cancer mutations. The database-driven analysis has revealed a differential enrichment of SNPs categories in functional regions of the kinase domain, demonstrating that a significant number of cancer mutations could fall at structurally equivalent positions (mutational hotspots) within the catalytic core. We have also found that structurally conserved mutational hotspots can be shared by multiple kinase genes and are often enriched by cancer driver mutations with high oncogenic activity. Structural modeling and energetic analysis of the mutational hotspots have suggested a common molecular mechanism of kinase activation by cancer mutations, and have allowed to reconcile the experimental data. According to a proposed mechanism, structural effect of kinase mutations with a high oncogenic potential may manifest in a significant destabilization of the autoinhibited kinase form, which is likely to drive tumorigenesis at some level. Structure-based functional annotation and prediction of cancer mutation effects in protein kinases can facilitate an understanding of the mutation-dependent activation process and inform experimental studies exploring molecular pathology of tumorigenesis

    A new hypothesis for the cancer mechanism

    Full text link

    Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis

    Get PDF
    <p>Abstract</p> <p>Super-macromolecular complexes play many important roles in eukaryotic cells. Classical structural biological studies focus on their complicated molecular structures, physical interactions and biochemical modifications. Recent advances concerning intracellular electric fields generated by cell organelles and super-macromolecular complexes shed new light on the mechanisms that govern the dynamics of mitosis and meiosis. In this review we synthesize this knowledge to provide an integrated theoretical model of these cellular events. We suggest that the electric fields generated by synchronized oscillation of microtubules, centrosomes, and chromatin fibers facilitate several events during mitosis and meiosis, including centrosome trafficking, chromosome congression in mitosis and synapsis between homologous chromosomes in meiosis. These intracellular electric fields are generated under energy excitation through the synchronized electric oscillations of the dipolar structures of microtubules, centrosomes and chromosomes, three of the super-macromolecular complexes within an animal cell.</p
    corecore