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Abstract

Super-macromolecular complexes play many important roles in eukaryotic cells.
Classical structural biological studies focus on their complicated molecular structures,
physical interactions and biochemical modifications. Recent advances concerning
intracellular electric fields generated by cell organelles and super-macromolecular
complexes shed new light on the mechanisms that govern the dynamics of mitosis
and meiosis. In this review we synthesize this knowledge to provide an integrated
theoretical model of these cellular events. We suggest that the electric fields
generated by synchronized oscillation of microtubules, centrosomes, and chromatin
fibers facilitate several events during mitosis and meiosis, including centrosome
trafficking, chromosome congression in mitosis and synapsis between homologous
chromosomes in meiosis. These intracellular electric fields are generated under
energy excitation through the synchronized electric oscillations of the dipolar
structures of microtubules, centrosomes and chromosomes, three of the
super-macromolecular complexes within an animal cell.
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Background
The choreography of microtubules, centrosomes and chromosomes during mitosis and

meiosis is beautifully designed by nature. Finely regulated and synchronized move-

ments of these super-macromolecular complexes against the entropic forces within a

dividing cell ensure the fidelity of the genetic material in both daughter cells. Cur-

rently, several models exist for the mechanisms of chromosome congression and spin-

dle body assembly during M phase such as the search and capture model, kinetochore-

mediated k-fibre formation, kinetochore motors contributing to congression, and the

polar wind model. The mechanisms evoked by these models probably overlap, so there

is redundancy among them, since mutations in the genes involved have only mild

effects on chromosome congression during mitosis [1]. Many open questions remain

within these models. In the polar-wind model, an unknown force (also known as the

ejection force) generated by the spindle poles is considered to push the chromosomes

to the spindle equator. Laser microsurgery experiments show that chromosome
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fragments without kinetochores are invariably expelled from the spindle, and chromo-

somes without kinetochores can still move from the vicinity of the spindle pole to the

spindle equator [1-3]. The ejection force of the spindle body is dependent on the

polymerization of spindle body microtubules, as depolymerization of astral microtu-

bules by nocodazole or colcemid prevents the expulsion of severed chromosome arms

from the spindle, whereas stabilization of microtubules by taxol drives chromosomes to

the periphery of the astral array [4]. In addition, the driving force responsible for the

pole-ward flux of spindle microtubules during metaphase remains uncharacterized [5].

Cellular electric fields have been studied in various cell types, and several studies have

reported the existence of dielectrophoretic forces around cells [6-8]; electromagnetic

interactions between cells have also been studied [9-11]. Cifra et al. proposed that micro-

tubules, which comprise heterodimers polymerized into a helical structure, can generate

an electric field under intracellular energy excitation [12-15]. Inhibition of microtubule

polymerization by an external electromagnetic field has been reported by Kirson et al.

[16,17]. Pokorny´ et al. detected four peaks of electric field activity around yeast cells dur-

ing M phase, which correlated with spindle body assembly, kinetochore microtubule cap-

ture, and mitotic spindle elongation during anaphase A and B, visualized by fluorescence

microscopy [18]. Comparing synchronized and unsynchronized tubulin mutants of yeast

cells, Pokorny´ et al. verified that synchronized yeast cells show more electric activity dur-

ing M phase than non-synchronized yeasts [19]. Direct measurements of electric resonant

oscillations in microtubules have been presented at conferences by A. Bandyopadhyay.

The technical aspects of direct detection of electric fields within a living cell have been

discussed in a recent review [20]. Resonance absorption of external electromagnetic fields

by cancers has been reported by Vedruccio et al. [21], and Zimmerman et al. reported that

cancer cell proliferation is inhibited by specific modulation frequencies [22].

Coherent oscillations in microtubules can be explained by Fröhlich’s theory, which

describes a system of oscillators with energy supply, linear and nonlinear coupling with a

heat bath. If a sufficient energy supply is provided to this system, condensation of energy

occurs in the lowest mode leading to its coherent excitation [23,24]. Electrostatic but not

electrodynamic interactions are screened over long distances (Debye Screening). Given an

intracellular salt concentration of ~ 150 mM, the effectiveness of electrostatic interaction

is shortened to the nanometer range (the Debye length is ~ 0.7-0.8 nm). However, reson-

ant electrodynamic interactions, such as the electromagnetic interactions generated by

electric oscillations within the cell, may play a role in the long-distance recruitment of bio-

molecules. Following Fröhlich, Preto et al. suggested that long-range electrodynamic inter-

actions can be triggered only under resonance conditions, and such interactions are

effective when one normal mode is statistically privileged, typically out of thermal equilib-

rium, which could be the case in the intracellular context [25,26].

In this article, we integrate research from several disciplines to provide an ‘electric’

view of the dynamics of these super-macromolecular complexes in mitosis, meiosis and

other relevant cellular events. From our theoretical point of view, many of the unidenti-

fied forces regulating major cellular dynamic events during mitosis are probably electric

forces generated by the synchronized oscillation of the electric dipoles within these

super-macro organelle structures. Chronic exposure to extremely low frequency electric

fields could affect several key steps of mitosis and neuronal cell physiology, resulting in

an increased risk for cancer.
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The electrical properties of microtubules and centrosomes

The electric field of the microtubule is generated by the synchronized oscillation of α

and β tubulins. These tubulins form electric dipoles during microtubule polymerization;

under intracellular energy excitation, synchronized oscillation of α and β tubulin subu-

nits generates a longitudinal electric field around the microtubule [12-15] (Figure 1).

Cifra et al. suggested that the source of the energy excitation could be hydrolysis of

guanosine triphosphate (GTP) during the process of dynamic instability of microtu-

bules, and also energy transferred from the movement of motor proteins or released

from mitochondria as “wasted” energy from the citric acid cycle. We propose that the

overall entropic environment within a living cell could be the source of energy for elec-

tric oscillation of microtubules. Cancer cells have different entropic states from normal

cells as a result of the Warburg effect, which can cause mitochondrial malfunctions

and further lead to alteration of cytoskeleton-based cellular elastoelectrical oscillations

[27]. The microtubule networks of cancer cells generate an electromagnetic field with

different frequencies. Thus, specific electromagnetic frequencies have been used to

diagnose specific cancers [21,28], and tumor-specific modulating electromagnetic fields

have been used to treat patients with advanced cancer with positive results [22,29].

The centriole of the centrosome is composed of α, β and γ tubulins organized differ-

ently from the subunits of microtubules; each centrosome comprises two centrioles,

which are composed of nine triplets of microtubules. The two centrioles are arranged

perpendicularly and surrounded by an amorphous mass of dense material (the pericen-

triolar material) [30]. As in microtubules, an electric field would be generated by syn-

chronized oscillation between the α and β tubulins within the microtubule triplet of the

centrioles (Figure 2).

Electric fields in centrosome separation and bipolar spindle body assembly

Mechanisms of centrosome separation and bipolar spindle body assembly have been

discussed in a recent review [31]. The process is still incompletely understood. Plus

end-directed motor proteins such as kinesin 5 and minus end-directed motor proteins

such as dynein are known to play dominant roles in centrosome separation and spindle

assembly. However, centrosomal microtubules and microtubules of the nuclear enve-

lope (NE) and cellular cortex need to move into close proximity for motor proteins to

attach to both so they can generate the pulling forces. The current models assume a
Figure 1 The red arrow illustrates the electric field of the microtubule under intracellular energy
excitation.



Figure 2 The red arrows illustrate the electric field of a centrosome under intracellular energy
excitation.
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randomized mode of microtubule interaction, which is quite inefficient. For example, at

a certain point a centrosome would have to stop moving until certain microtubules had

grown sufficiently for appropriate bridging by motor proteins, particularly during pro-

phase, when the centrosomes do not have many associated microtubules. When the

electric fields of microtubules and centrosomes are considered, these structures are

mutually attractive. Thus, centrosome movement along the microtubule networks of

the cellular cortex and NE is more efficient. We can also envision a more autonomous

mode of microtubule lattice formation within the cellular cortex and NE.
Electrical properties of duplicated chromosomes

Andrews et al. have studied the effects of high frequency (range 2 to 50 MHz) electric

fields on mammalian (human and Chinese hamster) chromosomes in vitro. They

showed that such chromosomes can be oriented, aligned and translated by an oscillat-

ing electrical force. They also observed that above certain threshold field strengths the

chromosomes orient themselves with their long axes along the field direction. The de-

pendence of this threshold on frequency was measured and was found to be much lar-

ger at low than at high frequencies [32]. Using electric dichroism experiments,

Crothers reported permanent dipole moments in dinucleosomes linked by 140 and 175

base pairs of DNA [33]. Jian Sun et al. suggested an electrostatic mechanism of nucleo-

somal array folding, revealed by computer simulation, which explains the salt-

dependent chromatin fiber conformations [34]. Schalch et al. reported that the X-ray

structure of an oligonucleosome revealed that linker DNA elements zigzag back and

forth between two stacks of nucleosome cores, forming a truncated two-start helix, and

do not follow a path compatible with a one-start solenoidal helix [35]. Grigoryev et al.

reported evidence for heteromorphic chromatin fibers, showing that the 2-start zigzag

topology and the type of linker DNA bending that defines solenoid models may be
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simultaneously present in a structurally heteromorphic chromatin fiber with a uniform

30 nm diameter [36].

However, the physical mechanisms that regulate higher order packaging of M phase

chromosomes are still not well characterized. Here we present a hypothesis of chromo-

some compaction. We apply a pulse-coupled oscillation clustering model to the dy-

namic events of chromosome packaging and inter-/intra-chromosomal organization.

During chromosomal packaging, differentially compacted regions form partially syn-

chronized electric oscillators interacting with an elastic electromagnetic field. Accord-

ing to the physical pulse-coupled oscillator model, unsynchronized pulse-coupled

oscillators with proximal natural frequencies form synchronized oscillation clusters at a

given coupling strength. As the coupling strength increases, these synchronized oscilla-

tion clusters merge with each other [37-40].

During M phase chromosome compaction, the 30 nm chromatin fiber is initially

formed by the electrostatic forces between neighboring nucleosomes. Under intracellu-

lar stochastic energy excitation, electric dipolar oscillation would be generated between

neighboring nucleosomes. After oscillation synchronization and coupling, regulated

electric oscillation is generated along the 30 nm chromatin fiber, and the oscillation

coupling process further compacts that fiber [12-14,41]. This facilitates further packing

into the 300 nm fiber; the electric field bends according to the physical curvature of

the compacting 30 nm fiber, generating an oscillating electromagnetic field that goes

through the 300 nm chromatin fiber. After the second round of oscillation

synchronization and coupling, the 300 nm fiber becomes compacted and coiled into

the 250 nm chromatin fiber, along which the third order of electromagnetic field is gen-

erated; this round of oscillation coupling and clustering facilitates the packing of the

250 nm chromatin fiber into the 700 nm chromosome arms. The coiling electromag-

netic field of the 250 nm chromatin fiber generates the electromagnetic field of a

chromosome arm [42,43] (Figure 3). We speculate that the source of the dipolar elec-

tric oscillation between neighboring nucleosomes is the variety of intracellular entropic

forces, and the direction of oscillation primarily depends on the zigzag arrangement of

neighboring nucleosomes along the 30 nm chromatin fiber. Each of the M phase

chromosomal arms can be viewed as a partially synchronized oscillation cluster. Under

intracellular energy excitation, partially synchronized electric fields can be generated

for each chromosomal arm, and these orient the dynamics of the chromosome when

they interact with the electric field generated by the spindle microtubules.

Theoretically, the oscillation clustering model explains the closely juxtaposed config-

uration of duplicated chromosomes during M phase, which is counter-intuitive from

the perspective of electrostatic repulsion between duplicated chromosome arms. As the

homologous chromosomal regions develop synchronized oscillation clusters with iden-

tical natural frequencies, they tend to cluster together. The same scenario could apply

to synapsis during meiosis; the electric oscillations of homologous chromosomes couple

with each other, preventing synapsis between non-homologous chromosomes.
Electric interactions during mitosis and meiosis

The intracellular electric fields described in the foregoing sections could facilitate several

cellular events during mitosis and meiosis. First, the metaphase bipolar spindle microtubules



Figure 3 (a) The small red arrows indicate the electric oscillations generated between the neighboring histone octamers by excitation of entropic energy within the cell nucleus. The
big red arrow represents the electric field generated by the electric oscillation along the 30 nm chromatin fiber. (b-d) Schematic illustration of several orders of oscillation coupling and clustering
of EMFs in chromatin fibers, which facilitate the multi-step event of M phase chromosome packaging. The red and orange arrows indicate the multiple orders of EMFs generated during
chromosome packaging. (e) The purple arrows indicate the EMFs of compacted M phase chromosome arms; the purple cycles indicate coupling of EMFs. The duplicated chromosome arms hold a
juxtaposed position.
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are formed through microtubule nucleation from the γ tubulin ring complexes (γ-TuRCs)

at the centrosomes and retrograde delivery of peripheral microtubules by motor proteins

[31,44-46]. The electric fields of microtubules and centrosomes could facilitate spindle

microtubule assembly through electric interactions. Secondly, the unidentified polar-wind

or ejection force of the spindle body is likely to be generated by interactions between the

electric fields of the spindle body and chromosomes [1-3]. In this case, the bipolar spindle

body and chromosomes can be viewed as two oscillating clusters with different average os-

cillating frequencies. Given the oscillation clustering model, a partially entrained system of

oscillators with similar frequencies preferentially cluster with each other at a given coupling

strength [37-40]. So the clustering of electric fields of spindle microtubules would result in

the repulsion of the electric field of the chromosomes, which pushes the chromosomes

from the proximal regions of centrosomes out of the spindle body. Congression at the cen-

tral plate regions of a dividing cell can also be viewed as oscillation clustering of the electric

fields of chromosomes. The processes may also be viewed as a dynamic electric phase,

which indicates that the intensity of the electric field changes in different subcellular regions

during metaphase. Cell organelles with different electric field intensities would automatically

locate themselves according to the electric phase. In addition, the pole-ward flux of spindle

microtubules during metaphase could be driven by the electric locking of those microtu-

bules within the spindle body, which means that the synchronized electric fields of the spin-

dle body would hold the physical position of a spindle microtubule growing at the plus end

and depolymerizing at the minus end at the same time within a dividing cell [5] (Figure 4).

According to the physical organization of the duplicated chromosome arms, the con-

densed electric chromosomal fields around the centromeric regions could attract

microtubule fragments to the sister kinetochores through electric interaction, which is

consistent with observations of kinetochore movement along uncaptured microtubules,

forming K-fibers (kinetochore associated microtubules) [47]. Thus, electric interactions

between chromosomes and microtubules may also facilitate K-fiber capture by
Figure 4 Schematic illustration of the electric interactions between spindle body microtubules and
chromosomes facilitating congression through oscillation clustering, and spindle body pole-ward
flux during mitosis; the green arrows indicate the direction of the pole-ward flux.
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kinetochores. The chromosome oscillation observed during congression could be

explained as the turbulence of chromosome arms passing through the chaotic electric

landscape of two astral microtubule networks.

In meiosis, the kinetochores are positioned at one side of the duplicated chromosome

dimers, so the two sister chromosomes do not separate. The electric oscillation clustering

between homologous chromosomal regions results in synapsis and recombination between

homologous chromosomes; the electric fields generated by two duplicated homologous

chromosomes can be viewed as two identical partially-entrained electric oscillation clusters,

constituted by sub-chromosomal clusters throughout the chromosome arms. Such clusters

in homologous chromosomes share identical electric frequencies, so the close juxtaposition

between homologous chromosomes at synapsis is achieved through electric clustering and

coupling among them. Synapsis does not occur during mitosis probably because the

chromosome configuration caused by the opposing outward-pulling forces of the kineto-

chores at the opposite sides of duplicated centromere disfavors inter-chromosomal electric

attraction. In addition, this event may be regulated by synaptonemal complex proteins [48].

Magidson et al. reported that chromosomes adopt a toroidal/ring shape organization

of after NE breakdown, which facilitates spindle assembly during M phase [47]. Their

observation matches the electric model at several points: the ring shape organization

could be generated by the electric interaction between M phase chromosomes and the

spindle body, and the interplay between the electric fields of the chromosome ring and

spindle body microtubules promotes the capture of microtubules by kinetochores.
Discussion
Numerous reports indicate that extremely low frequency electric fields can increase the

risks of certain types of cancer [49]. Micronuclei (MN) in buccal mucosal cells, compris-

ing acentric fragments or complete chromosomes that fail to attach to the mitotic spindle

during cytokinesis, are increased in people chronically exposed to extremely low fre-

quency electric fields [50]. Research by Hardell et al. indicates increased brain tumor risks

with latency time and cumulative mobile or cordless phone use [51]. Volkow et al.

reported that 50-minute cell phone exposure was associated with increased brain glucose

metabolism in the region closest to the antenna [52]. However, the exact cellular biophys-

ical pathways that relay very low frequency electric radiations to genetic alterations that

lead to cancer are not well characterized. From our theoretical point of view, chronic ex-

posure to extremely low frequency electric fields would intervene in several key steps of

mitosis and neuronal cell physiology, potentially resulting in an increased risk for cancer.

To characterize these intracellular electric fields and study their cellular functions

further, biophysicists should develop more detailed mathematical and physical models

for chromosome electric fields and their role in M phase chromosome compaction, to

allow these fields to be described and calculated more precisely and to predict the dy-

namics of related cellular events. The dynamic of changes of the electric fields in a liv-

ing cell during mitosis and other cellular processes could be visualized using live cell

imaging technologies such as nano-sized voltmeters [53]. It would be particularly inter-

esting to observe microtubule self-organization under energy excitation in vitro, which

would allow us to observe the dynamics of microtubule movements directly through

electric interactions. These insights will help us to understand the molecular mechanisms
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of signal pathways better and to elucidate cellular super-macromolecular behavior, cell or-

ganelle organization and functions, intra- and inter-cellular communications, tissue mor-

phogenesis, embryo development, neurobiology, and oncogenesis, and finally to advance

our knowledge about life to a new level.
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