51 research outputs found

    Avoiding obscure topics and generalising findings produces higher impact research

    Get PDF
    Much academic research is never cited and may be rarely read, indicating wasted effort from the authors, referees and publishers. One reason that an article could be ignored is that its topic is, or appears to be, too obscure to be of wide interest, even if excellent scholarship produced it. This paper reports a word frequency analysis of 874,411 English article titles from 18 different Scopus natural, formal, life and health sciences categories 2009-2015 to assess the likelihood that research on obscure (rarely researched) topics is less cited. In all categories examined, unusual words in article titles associate with below average citation impact research. Thus, researchers considering obscure topics may wish to reconsider, generalise their study, or to choose a title that reflects the wider lessons that can be drawn. Authors should also consider including multiple concepts and purposes within their titles in order to attract a wider audience

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    From Speculation to Understanding

    No full text

    Jovian lightning whistles a new tune

    No full text

    Simulations of future particle accelerators: Issues and mitigations

    No full text
    The ever increasing demands placed upon machine performance have resulted in the need for more comprehensive particle accelerator modeling. Computer simulations are key to the success of particle accelerators. Many aspects of particle accelerators rely on computer modeling at some point, sometimes requiring complex simulation tools and massively parallel supercomputing. Examples include the modeling of beams at extreme intensities and densities (toward the quantum degeneracy limit), and with ultra-fine control (down to the level of individual particles). In the future, adaptively tuned models might also be relied upon to provide beam measurements beyond the resolution of existing diagnostics. Much time and effort has been put into creating accelerator software tools, some of which are highly successful. However, there are also shortcomings such as the general inability of existing software to be easily modified to meet changing simulation needs. In this paper possible mitigating strategies are discussed for issues faced by the accelerator community as it endeavors to produce better and more comprehensive modeling tools. This includes lack of coordination between code developers, lack of standards to make codes portable and/or reusable, lack of documentation, among others
    corecore