28 research outputs found
Chagas Cardiomiopathy: The Potential of Diastolic Dysfunction and Brain Natriuretic Peptide in the Early Identification of Cardiac Damage
Chagas disease remains a major cause of morbidity and mortality in several
countries of Latin America and has become a potential public health problem in
countries where the disease is not endemic as a result of migration flows.
Cardiac involvement represents the main cause of mortality, but its diagnosis is
still based on nonspecific criteria with poor sensitivity. Early identification
of patients with cardiac damage is desirable, since early treatment may improve
prognosis. Diastolic dysfunction and elevated brain natriuretic peptide levels
are present in different cardiomyopathies and in advanced phases of Chagas
disease. However, there are scarce data about the role of these parameters in
earlier forms of the disease. We conducted a study to assess the diastolic
function, regional systolic abnormalities and brain natriuretic peptide levels
in the different forms of Chagas disease. The main finding of our investigation
is that diastolic dysfunction occurs before any cardiac dilatation or motion
abnormality. In addition, BNP levels identify patients with diastolic
dysfunction and Chagas disease with high specificity. The results reported in
this study could help to early diagnose myocardial involvement and better
stratify patients with Chagas disease
Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a spatially explicit, individual-based model
ABSTRACT: BACKGROUND: Simulation models of influenza spread play an important role for pandemic preparedness. However, as the world has not faced a severe pandemic for decades, except the rather mild H1N1 one in 2009, pandemic influenza models are inherently hypothetical and validation is, thus, difficult. We aim at reconstructing a recent seasonal influenza epidemic that occurred in Switzerland and deem this to be a promising validation strategy for models of influenza spread. METHODS: We present a spatially explicit, individual-based simulation model of influenza spread. The simulation model bases upon (i) simulated human travel data, (ii) data on human contact patterns and (iii) empirical knowledge on the epidemiology of influenza. For model validation we compare the simulation outcomes with empirical knowledge regarding (i) the shape of the epidemic curve, overall infection rate and reproduction number, (ii) age-dependent infection rates and time of infection, (iii) spatial patterns. RESULTS: The simulation model is capable of reproducing the shape of the 2003/2004 H3N2 epidemic curve of Switzerland and generates an overall infection rate (14.9 percent) and reproduction numbers (between 1.2 and 1.3), which are realistic for seasonal influenza epidemics. Age and spatial patterns observed in empirical data are also reflected by the model: Highest infection rates are in children between 5 and 14 and the disease spreads along the main transport axes from west to east. CONCLUSIONS: We show that finding evidence for the validity of simulation models of influenza spread by challenging them with seasonal influenza outbreak data is possible and promising. Simulation models for pandemic spread gain more credibility if they are able to reproduce seasonal influenza outbreaks. For more robust modelling of seasonal influenza, serological data complementing sentinel information would be beneficia
Supernova remnants: the X-ray perspective
Supernova remnants are beautiful astronomical objects that are also of high
scientific interest, because they provide insights into supernova explosion
mechanisms, and because they are the likely sources of Galactic cosmic rays.
X-ray observations are an important means to study these objects.And in
particular the advances made in X-ray imaging spectroscopy over the last two
decades has greatly increased our knowledge about supernova remnants. It has
made it possible to map the products of fresh nucleosynthesis, and resulted in
the identification of regions near shock fronts that emit X-ray synchrotron
radiation.
In this text all the relevant aspects of X-ray emission from supernova
remnants are reviewed and put into the context of supernova explosion
properties and the physics and evolution of supernova remnants. The first half
of this review has a more tutorial style and discusses the basics of supernova
remnant physics and thermal and non-thermal X-ray emission. The second half
offers a review of the recent advances.The topics addressed there are core
collapse and thermonuclear supernova remnants, SN 1987A, mature supernova
remnants, mixed-morphology remnants, including a discussion of the recent
finding of overionization in some of them, and finally X-ray synchrotron
radiation and its consequences for particle acceleration and magnetic fields.Comment: Published in Astronomy and Astrophysics Reviews. This version has 2
column-layout. 78 pages, 42 figures. This replaced version has some minor
language edits and several references have been correcte
