283 research outputs found

    Flaws in design, analysis and interpretation of Pfizer's antifungal trials of voriconazole and uncritical subsequent quotations

    Get PDF
    We have previously described how a series of trials sponsored by Pfizer of its antifungal drug, fluconazole, in cancer patients with neutropenia handicapped the control drug, amphotericin B, by flaws in design and analysis. We describe similar problems in two pivotal trials of Pfizer's new antifungal agent, voriconazole, published in a prestigious journal. In a non-inferiority trial, voriconazole was significantly inferior to liposomal amphothericin B, but the authors concluded that voriconazole was a suitable alternative. The second trial used amphothericin B deoxycholate as comparator, but handicapped the drug by not requiring pre-medication to reduce infusion-related toxicity or substitution with electrolytes and fluid to reduce nephrotoxicity, although the planned duration of treatment was 84 days. Voriconazole was given for 77 days on average, but the comparator for only 10 days, which precludes a meaningful comparison. In a random sample of 50 references to these trials, we found that the unwarranted conclusions were mostly uncritically propagated. It was particularly surprising that relevant criticism raised by the FDA related to the first trial was only quoted once, and that none of the articles noted the obvious flaws in the design of the second trial. We suggest that editors ensure that the abstract reflects fairly on the remainder of the paper, and that journals do not impose any time limit for accepting letters that point out serious weaknesses in a study that have not been noted before

    NOMA: A Preventable “Scourge” of African Children

    Get PDF
    Noma is a serious orofacial gangrene originating intraorally in the gingival-oral mucosa complex before spreading extraorally to produce a visibly destructive ulcer. Although cases of noma are now rarely reported in the developed countries, it is still prevalent among children in third world countries, notably in sub-Sahara Africa, where poverty, ignorance, malnutrition, and preventable childhood infections are still common. This review summarizes historical, epidemiological, management, and research updates on noma with suggestions for its prevention and ultimate global eradication. The global annual incidence remains high at about 140,000 cases, with a mortality rate exceeding 90% for untreated diseases. Where the patients survive, noma defects result in unsightly facial disfigurement, intense scarring, trismus, oral incompetence, and social alienation. Although the etiology has long been held to be infectious, a definitive causal role between microorganisms cited, and noma has been difficult to establish. The management of noma with active disease requires antibiotics followed by reconstructive surgery. Current research efforts are focused towards a comprehensive understanding of the epidemiology, and further elucidation of the microbiology and pathogenesis of noma

    JC Virus T-Antigen Regulates Glucose Metabolic Pathways in Brain Tumor Cells

    Get PDF
    Recent studies have reported the detection of the human neurotropic virus, JCV, in a significant population of brain tumors, including medulloblastomas. Accordingly, expression of the JCV early protein, T-antigen, which has transforming activity in cell culture and in transgenic mice, results in the development of a broad range of tumors of neural crest and glial origin. Evidently, the association of T-antigen with a range of tumor-suppressor proteins, including p53 and pRb, and signaling molecules, such as β-catenin and IRS-1, plays a role in the oncogenic function of JCV T-antigen. We demonstrate that T-antigen expression is suppressed by glucose deprivation in medulloblastoma cells and in glioblastoma xenografts that both endogenously express T-antigen. Mechanistic studies indicate that glucose deprivation-mediated suppression of T-antigen is partly influenced by 5′-activated AMP kinase (AMPK), an important sensor of the AMP/ATP ratio in cells. In addition, glucose deprivation-induced cell cycle arrest in the G1 phase is blocked with AMPK inhibition, which also prevents T-antigen downregulation. Furthermore, T-antigen prevents G1 arrest and sustains cells in the G2 phase during glucose deprivation. On a functional level, T-antigen downregulation is partially dependent on reactive oxygen species (ROS) production during glucose deprivation, and T-antigen prevents ROS induction, loss of ATP production, and cytotoxicity induced by glucose deprivation. Additionally, we have found that T-antigen is downregulated by the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), and the pentose phosphate inhibitors, 6-aminonicotinamide and oxythiamine, and that T-antigen modulates expression of the glycolytic enzyme, hexokinase 2 (HK2), and the pentose phosphate enzyme, transaldolase-1 (TALDO1), indicating a potential link between T-antigen and metabolic regulation. These studies point to the possible involvement of JCV T-antigen in medulloblastoma proliferation and the metabolic phenotype and may enhance our understanding of the role of viral proteins in glycolytic tumor metabolism, thus providing useful targets for the treatment of virus-induced tumors

    Isolation, Characterization, and Stability of Discretely-Sized Nanolipoprotein Particles Assembled with Apolipophorin-III

    Get PDF
    Background: Nanolipoprotein particles (NLPs) are discoidal, nanometer-sized particles comprised of self-assembled phospholipid membranes and apolipoproteins. NLPs assembled with human apolipoproteins have been used for myriad biotechnology applications, including membrane protein solubilization, drug delivery, and diagnostic imaging. To expand the repertoire of lipoproteins for these applications, insect apolipophorin-III (apoLp-III) was evaluated for the ability to form discretely-sized, homogeneous, and stable NLPs. Methodology: Four NLP populations distinct with regards to particle diameters (ranging in size from 10 nm to.25 nm) and lipid-to-apoLp-III ratios were readily isolated to high purity by size exclusion chromatography. Remodeling of the purified NLP species over time at 4uC was monitored by native gel electrophoresis, size exclusion chromatography, and atomic force microscopy. Purified 20 nm NLPs displayed no remodeling and remained stable for over 1 year. Purified NLPs with 10 nm and 15 nm diameters ultimately remodeled into 20 nm NLPs over a period of months. Intra-particle chemical cross-linking of apoLp-III stabilized NLPs of all sizes. Conclusions: ApoLp-III-based NLPs can be readily prepared, purified, characterized, and stabilized, suggesting their utilit

    Fungal infection-related mortality versus total mortality as an outcome in trials of antifungal agents

    Get PDF
    BACKGROUND: Disease specific mortality is often used as outcome rather than total mortality in clinical trials. This approach assumes that the classification of cause of death is unbiased. We explored whether use of fungal infection-related mortality as outcome rather than total mortality leads to bias in trials of antifungal agents in cancer patients. METHODS: As an estimate of bias we used relative risk of death in those patients the authors considered had not died from fungal infection. Our sample consisted of 69 trials included in four systematic reviews of prophylactic or empirical antifungal treatment in patients with cancer and neutropenia we have published previously. RESULTS: Thirty trials met the inclusion criteria. The trials comprised 6130 patients and 869 deaths, 220 (25%) of which were ascribed to fungal infection. The relative risk of death was 0.85 (95% CI 0.75–0.96) for total mortality, 0.57 (95% CI 0.44–0.74) for fungal mortality, and 0.95 (95% CI 0.82–1.09) for mortality among those who did not die from fungal infection. CONCLUSION: We could not support the hypothesis that use of disease specific mortality introduces bias in antifungal trials on cancer patients as our estimate of the relative risk for mortality in those who survived the fungal infection was not increased. We conclude that it seems to be reliable to use fungal mortality as the primary outcome in trials of antifungal agents. Data on total mortality should be reported as well, however, to guard against the possible introduction of harmful treatments

    Water Availability Is the Main Climate Driver of Neotropical Tree Growth

    Get PDF
    • Climate models for the coming century predict rainfall reduction in the Amazonian region, including change in water availability for tropical rainforests. Here, we test the extent to which climate variables related to water regime, temperature and irradiance shape the growth trajectories of neotropical trees. • We developed a diameter growth model explicitly designed to work with asynchronous climate and growth data. Growth trajectories of 205 individual trees from 54 neotropical species censused every 2 months over a 4-year period were used to rank 9 climate variables and find the best predictive model. • About 9% of the individual variation in tree growth was imputable to the seasonal variation of climate. Relative extractable water was the main predictor and alone explained more than 60% of the climate effect on tree growth, i.e. 5.4% of the individual variation in tree growth. Furthermore, the global annual tree growth was more dependent on the diameter increment at the onset of the rain season than on the duration of dry season. • The best predictive model included 3 climate variables: relative extractable water, minimum temperature and irradiance. The root mean squared error of prediction (0.035 mm.d–1) was slightly above the mean value of the growth (0.026 mm.d–1). • Amongst climate variables, we highlight the predominant role of water availability in determining seasonal variation in tree growth of neotropical forest trees and the need to include these relationships in forest simulators to test, in silico, the impact of different climate scenarios on the future dynamics of the rainforest

    Guanosine reduces apoptosis and inflammation associated with restoration of function in rats with acute spinal cord injury

    Get PDF
    Spinal cord injury results in progressive waves of secondary injuries, cascades of noxious pathological mechanisms that substantially exacerbate the primary injury and the resultant permanent functional deficits. Secondary injuries are associated with inflammation, excessive cytokine release, and cell apoptosis. The purine nucleoside guanosine has significant trophic effects and is neuroprotective, antiapoptotic in vitro, and stimulates nerve regeneration. Therefore, we determined whether systemic administration of guanosine could protect rats from some of the secondary effects of spinal cord injury, thereby reducing neurological deficits. Systemic administration of guanosine (8 mg/kg per day, i.p.) for 14 consecutive days, starting 4 h after moderate spinal cord injury in rats, significantly improved not only motor and sensory functions, but also recovery of bladder function. These improvements were associated with reduction in the inflammatory response to injury, reduction of apoptotic cell death, increased sparing of axons, and preservation of myelin. Our data indicate that the therapeutic action of guanosine probably results from reducing inflammation resulting in the protection of axons, oligodendrocytes, and neurons and from inhibiting apoptotic cell death. These data raise the intriguing possibility that guanosine may also be able to reduce secondary pathological events and thus improve functional outcome after traumatic spinal cord injury in humans

    Do pharmacokinetic polymorphisms explain treatment failure in high-risk patients with neuroblastoma?

    Full text link

    Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?

    Get PDF
    White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process
    corecore