68 research outputs found

    Optimal use of visual information in adolescents and young adults with developmental coordination disorder

    Get PDF
    Recent reports offer contrasting views on whether or not the use of online visual control is impaired in individuals with developmental coordination disorder (DCD). This study explored the optimal temporal basis for processing and using visual information in adolescents and young adults with DCD. Participants were 22 adolescents and young adults (12 males and 10 females; M = 19 years, SD = 3). Half had been diagnosed with DCD as children and still performed poorly on the movement assessment battery for children (DCD group; n = 11), and half reported typical development (TD group; n = 11) and were age- and gender-matched with the DCD group. We used performance on a steering task as a measure of information processing and examined the use of advance visual information. The conditions varied the duration of advance visual information: 125, 250, 500, 750, and 1,000 ms. With increased duration of advance visual information, the TD group showed a pattern of linear improvement. For the DCD group, however, the pattern was best described by a U-curve where optimal performance occurred with about 750 ms of advance information. The results suggest that the DCD group has an underlying preference for immediate online processing of visual information. The exact timing for optimal online control may depend crucially on the task, but too much advance information is detrimental to performance

    A biologically plausible model of time-scale invariant interval timing

    Get PDF
    The temporal durations between events often exert a strong influence over behavior. The details of this influence have been extensively characterized in behavioral experiments in different animal species. A remarkable feature of the data collected in these experiments is that they are often time-scale invariant. This means that response measurements obtained under intervals of different durations coincide when plotted as functions of relative time. Here we describe a biologically plausible model of an interval timing device and show that it is consistent with time-scale invariant behavior over a substantial range of interval durations. The model consists of a set of bistable units that switch from one state to the other at random times. We first use an abstract formulation of the model to derive exact expressions for some key quantities and to demonstrate time-scale invariance for any range of interval durations. We then show how the model could be implemented in the nervous system through a generic and biologically plausible mechanism. In particular, we show that any system that can display noise-driven transitions from one stable state to another can be used to implement the timing device. Our work demonstrates that a biologically plausible model can qualitatively account for a large body of data and thus provides a link between the biology and behavior of interval timing

    Reduction in Learning Rates Associated with Anterograde Interference Results from Interactions between Different Timescales in Motor Adaptation

    Get PDF
    Prior experiences can influence future actions. These experiences can not only drive adaptive changes in motor output, but they can also modulate the rate at which these adaptive changes occur. Here we studied anterograde interference in motor adaptation – the ability of a previously learned motor task (Task A) to reduce the rate of subsequently learning a different (and usually opposite) motor task (Task B). We examined the formation of the motor system's capacity for anterograde interference in the adaptive control of human reaching-arm movements by determining the amount of interference after varying durations of exposure to Task A (13, 41, 112, 230, and 369 trials). We found that the amount of anterograde interference observed in the learning of Task B increased with the duration of Task A. However, this increase did not continue indefinitely; instead, the interference reached asymptote after 15–40 trials of Task A. Interestingly, we found that a recently proposed multi-rate model of motor adaptation, composed of two distinct but interacting adaptive processes, predicts several key features of the interference patterns we observed. Specifically, this computational model (without any free parameters) predicts the initial growth and leveling off of anterograde interference that we describe, as well as the asymptotic amount of interference that we observe experimentally (R2β€Š=β€Š0.91). Understanding the mechanisms underlying anterograde interference in motor adaptation may enable the development of improved training and rehabilitation paradigms that mitigate unwanted interference

    Behavioural Significance of Cerebellar Modules

    Get PDF
    A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control

    The Neural Basis of Cognitive Efficiency in Motor Skill Performance from Early Learning to Automatic Stages

    Get PDF

    Honouring indigenous treaty rights for climate justice

    No full text
    Expansion of the oil sands industry in Canada has caused land destruction and social friction. Canada could become a leader in climate governance by honouring treaty commitments made with indigenous peoples
    • …
    corecore