131 research outputs found

    Serum procalcitonin for the early recognition of nosocomial infection in the critically ill patients: a preliminary report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The usefulness of procalcitonin (PCT) measurement in critically ill medical patients with suspected nosocomial infection is unclear. The aim of the study was to assess PCT value for the early diagnosis of bacterial nosocomial infection in selected critically ill patients.</p> <p>Methods</p> <p>An observational cohort study in a 15-bed intensive care unit was performed. Seventy patients with either proven (n = 47) or clinically suspected but not confirmed (n = 23) nosocomial infection were included. Procalcitonin measurements were obtained the day when the infection was suspected (D0) and at least one time within the 3 previous days (D-3 to D0). Patients with proven infection were compared to those without. The diagnostic value of PCT on D0 was determined through the construction of the corresponding receiver operating characteristic (ROC) curve. In addition, the predictive value of PCT variations preceding the clinical suspicion of infection was assessed.</p> <p>Results</p> <p>PCT on D0 was the best predictor of proven infection in this population of ICU patients with a clinical suspicion of infection (AUROCC = 0.80; 95% CI, 0.68–0.91). Thus, a cut-off value of 0.44 ng/mL provides sensitivity and specificity of 65.2% and 83.0%, respectively. Procalcitonin variation between D-1 and D0 was calculated in 45 patients and was also found to be predictive of nosocomial infection (AUROCC = 0.89; 95% CI, 0.79–0.98) with a 100% positive predictive value if the +0.26 ng/mL threshold value was applied. Comparable results were obtained when PCT variation between D-2 and D0, or D-3 and D0 were considered. In contrast, CRP elevation, leukocyte count and fever had a poor predictive value in our population.</p> <p>Conclusion</p> <p>PCT monitoring could be helpful in the early diagnosis of nosocomial infection in the ICU. Both absolute values and variations should be considered and evaluated in further studies.</p

    The Potential Influence of Common Viral Infections Diagnosed during Hospitalization among Critically Ill Patients in the United States

    Get PDF
    Viruses are the most common source of infection among immunocompetent individuals, yet they are not considered a clinically meaningful risk factor among the critically ill. This work examines the association of viral infections diagnosed during the hospital stay or not documented as present on admission to the outcomes of ICU patients with no evidence of immunosuppression on admission. This is a population-based retrospective cohort study of University HealthSystem Consortium (UHC) academic centers in the U.S. from the years 2006 to 2009. The UHC is an alliance of over 90% of the non-profit academic medical centers in the U.S. A total of 209,695 critically ill patients were used in this analysis. Eight hospital complications were examined. Patients were grouped into four cohorts: absence of infection, bacterial infection only, viral infection only, and bacterial and viral infection during same hospital admission. Viral infections diagnosed during hospitalization significantly increased the risk of all complications. There was also a seasonal pattern for viral infections. Specific viruses associated with poor outcomes included influenza, RSV, CMV, and HSV. Patients who had both viral and bacterial infections during the same hospitalization had the greatest risk of mortality RR 6.58, 95% CI (5.47, 7.91); multi-organ failure RR 8.25, 95% CI (7.50, 9.07); and septic shock RR 271.2, 95% CI (188.0, 391.3). Viral infections may play a significant yet unrecognized role in the outcomes of ICU patients. They may serve as biological markers or play an active role in the development of certain adverse complications by interacting with coincident bacterial infection

    Time of Day and its Association with Risk of Death and Chance of Discharge in Critically Ill Patients: A Retrospective Study.

    Get PDF
    Outcomes following admission to intensive care units (ICU) may vary with time and day. This study investigated associations between time of day and risk of ICU mortality and chance of ICU discharge in acute ICU admissions. Adult patients (age ≥ 18 years) who were admitted to ICUs participating in the Austrian intensive care database due to medical or surgical urgencies and emergencies between January 2012 and December 2016 were included in this retrospective study. Readmissions were excluded. Statistical analysis was conducted using the Fine-and-Gray proportional subdistribution hazards model concerning ICU mortality and ICU discharge within 30 days adjusted for SAPS 3 score. 110,628 admissions were analysed. ICU admission during late night and early morning was associated with increased hazards for ICU mortality; HR: 1.17; 95% CI: 1.08-1.28 for 00:00-03:59, HR: 1.16; 95% CI: 1.05-1.29 for 04:00-07:59. Risk of death in the ICU decreased over the day; lowest HR: 0.475, 95% CI: 0.432-0.522 for 00:00-03:59. Hazards for discharge from the ICU dropped sharply after 16:00; lowest HR: 0.024; 95% CI: 0.019-0.029 for 00:00-03:59. We conclude that there are "time effects" in ICUs. These findings may spark further quality improvement efforts

    Hospital mortality is associated with ICU admission time

    Get PDF
    Previous studies have shown that patients admitted to the intensive care unit (ICU) after "office hours" are more likely to die. However these results have been challenged by numerous other studies. We therefore analysed this possible relationship between ICU admission time and in-hospital mortality in The Netherlands. This article relates time of ICU admission to hospital mortality for all patients who were included in the Dutch national ICU registry (National Intensive Care Evaluation, NICE) from 2002 to 2008. We defined office hours as 08:00-22:00 hours during weekdays and 09:00-18:00 hours during weekend days. The weekend was defined as from Saturday 00:00 hours until Sunday 24:00 hours. We corrected hospital mortality for illness severity at admission using Acute Physiology and Chronic Health Evaluation II (APACHE II) score, reason for admission, admission type, age and gender. A total of 149,894 patients were included in this analysis. The relative risk (RR) for mortality outside office hours was 1.059 (1.031-1.088). Mortality varied with time but was consistently higher than expected during "off hours" and lower during office hours. There was no significant difference in mortality between different weekdays of Monday to Thursday, but mortality increased slightly on Friday (RR 1.046; 1.001-1.092). During the weekend the RR was 1.103 (1.071-1.136) in comparison with the rest of the week. Hospital mortality in The Netherlands appears to be increased outside office hours and during the weekends, even when corrected for illness severity at admission. However, incomplete adjustment for certain confounders might still play an important role. Further research is needed to fully explain this differenc

    Diagnostic and prognostic value of procalcitonin among febrile critically ill patients with prolonged ICU stay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Procalcitonin (PCT) has been proposed as a diagnostic and prognostic sepsis marker, but has never been validated in febrile patients with prolonged ICU stay.</p> <p>Methods</p> <p>Patients were included in the study provided they were hospitalised in the ICU for > 10 days, were free of infection and presented a new episode of SIRS, with fever >38°C being obligatory. Fifty patients fulfilled the above criteria. PCT was measured daily during the ICU stay. The primary outcome was proven infection.</p> <p>Results</p> <p>Twenty-seven out of 50 patients were diagnosed with infection. Median PCT on the day of fever was 1.18 and 0.17 ng/ml for patients with and without proven infections (p < 0.001). The area under the curve for PCT was 0.85 (95% CI; 0.71-0.93), for CRP 0.65 (0.46-0.78) and for WBC 0.68 (0.49-0.81). A PCT level of 1 ng/mL yielded a negative predictive value of 72% for the presence of infection, while a PCT of 1.16 had a specificity of 100%. A two-fold increase of PCT between fever onset and the previous day was associated with proven infection (p 0.001) (OR = 8.55; 2.4-31.1), whereas a four-fold increase of PCT of any of the 6 preceding days was associated with a positive predictive value exceeding 69.65%. A PCT value less than 0.5 ng/ml on the third day after the advent of fever was associated with favorable survival (p 0.01).</p> <p>Conclusion</p> <p>The reported data support that serial serum PCT may be a valuable diagnostic and prognostic marker in febrile chronic critically ill patients.</p

    Impact of previous sepsis on the accuracy of procalcitonin for the early diagnosis of blood stream infection in critically ill patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood stream infections (BSI) are life-threatening infections in intensive care units (ICU), and prognosis is highly dependent on early detection. Procalcitonin levels have been shown to accurately and quickly distinguish between BSI and noninfectious inflammatory states in critically ill patients. It is, however, unknown to what extent a recent history of sepsis (namely, secondary sepsis) can affect diagnosis of BSI using PCT.</p> <p>Methods</p> <p>review of the medical records of every patient with BSI in whom PCT dosage at the onset of sepsis was available between 1<sup>st </sup>September, 2006 and 31<sup>st </sup>July, 2007.</p> <p>Results</p> <p>179 episodes of either primary (<it>n </it>= 117) or secondary (<it>n </it>= 62) sepsis were included. Procalcitonin levels were found to be markedly lower in patients with secondary sepsis than in those without (6.4 [9.5] vs. 55.6 [99.0] ng/mL, respectively; <it>p </it>< 0.001), whereas the SOFA score was similar in the two groups. Although patients in the former group were more likely to have received steroids and effective antibiotic therapy prior to the BSI episode, and despite a higher proportion of candidemia in this group, a low PCT value was found to be independently associated with secondary sepsis (Odd Ratio = 0.33, 95% Confidence Interval: 0.16–0.70; <it>p </it>= 0.004). Additional patients with suspected but unconfirmed sepsis were used as controls (<it>n </it>= 23). Thus, diagnostic accuracy of PCT as assessed by the area under the receiver-operating characteristic curves (AUROCC) measurement was decreased in the patients with secondary sepsis compared to those without (AUROCC = 0.805, 95% CI: 0.699–0.879, vs. 0.934, 95% CI: 0.881–0.970, respectively; <it>p </it>< 0.050).</p> <p>Conclusion</p> <p>In a critically ill patient with BSI, PCT elevation and diagnosis accuracy could be lower if sepsis is secondary than in those with a first episode of infection.</p

    Procalcitonin levels in acute exacerbation of COPD admitted in ICU: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibiotics are recommended for severe acute exacerbation of chronic obstructive pulmonary disease (AECOPD) admitted to intensive care units (ICU). Serum procalcitonin (PCT) could be a useful tool for selecting patients with a lower probability of developing bacterial infection, but its measurement has not been investigated in this population.</p> <p>Methods</p> <p>We conducted a single center prospective cohort study in consecutive COPD patients admitted to the ICU for AECOPD between September 2005 and September 2006. Sputum samples or tracheal aspirates were tested for the presence of bacteria and viruses. PCT levels were measured at the time of admittance, six hours, and 24 hours using a sensitive immunoassay.</p> <p>Results</p> <p>Thirty nine AECOPD patients were included, 31 of which (79%) required a ventilator support at admission. The median [25%–75% interquartile range] PCT level, assessed in 35/39 patients, was: 0.096 μg/L [IQR, 0.065 to 0.178] at the time of admission, 0.113 μg/L [IQR, 0.074 to 0.548] at six hours, and 0.137 μg/L [IQR, 0.088 to 0.252] at 24 hours. The highest PCT (PCTmax) levels were less than 0.1 μg/L in 14/35 (40%) patients and more than 0.25 μg/L in 10/35 (29%) patients, suggesting low and high probability of bacterial infection, respectively. Five species of bacteria and nine species of viruses were detected in 12/39 (31%) patients. Among the four patients positive for <it>Pseudomonas aeruginosa</it>, one had a PCTmax less than 0.25 μg/L and three had a PCTmax less than 0.1 μg/L. The one patient positive for <it>Haemophilus influenzae </it>had a PCTmax more than 0.25 μg/L. The presence or absence of viruses did not influence PCT at time of admission (0.068 vs 0.098 μg/L respectively, <it>P </it>= 0.80).</p> <p>Conclusion</p> <p>The likelihood of bacterial infection is low among COPD patients admitted to ICU for AECOPD (40% with PCT < 0.1 μg/L) suggesting a possible inappropriate use of antibiotics. Further studies are necessary to assess the impact of a procalcitonin-based therapeutic strategy in critically ill COPD patients.</p

    Repertoire of Intensive Care Unit Pneumonia Microbiota

    Get PDF
    Despite the considerable number of studies reported to date, the causative agents of pneumonia are not completely identified. We comprehensively applied modern and traditional laboratory diagnostic techniques to identify microbiota in patients who were admitted to or developed pneumonia in intensive care units (ICUs). During a three-year period, we tested the bronchoalveolar lavage (BAL) of patients with ventilator-associated pneumonia, community-acquired pneumonia, non-ventilator ICU pneumonia and aspiration pneumonia, and compared the results with those from patients without pneumonia (controls). Samples were tested by amplification of 16S rDNA, 18S rDNA genes followed by cloning and sequencing and by PCR to target specific pathogens. We also included culture, amoeba co-culture, detection of antibodies to selected agents and urinary antigen tests. Based on molecular testing, we identified a wide repertoire of 160 bacterial species of which 73 have not been previously reported in pneumonia. Moreover, we found 37 putative new bacterial phylotypes with a 16S rDNA gene divergence ≥98% from known phylotypes. We also identified 24 fungal species of which 6 have not been previously reported in pneumonia and 7 viruses. Patients can present up to 16 different microorganisms in a single BAL (mean ± SD; 3.77±2.93). Some pathogens considered to be typical for ICU pneumonia such as Pseudomonas aeruginosa and Streptococcus species can be detected as commonly in controls as in pneumonia patients which strikingly highlights the existence of a core pulmonary microbiota. Differences in the microbiota of different forms of pneumonia were documented
    corecore