49 research outputs found

    Evolutionary History of Rabies in Ghana

    Get PDF
    Rabies virus (RABV) is enzootic throughout Africa, with the domestic dog (Canis familiaris) being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages have been detected in West Africa. Lineage 2 is present throughout West Africa, whereas Africa 1a dominates in northern and eastern Africa, but has been detected in Nigeria and Gabon, and Africa 1b was previously absent from West Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected over an eighteen-month period (2007–2009). Phylogenetic analysis of the sequences obtained confirmed all viruses to be RABV, belonging to lineages previously detected in sub-Saharan Africa. However, unlike earlier reported studies that suggested a single lineage (Africa 2) circulates in West Africa, we identified viruses belonging to the Africa 2 lineage and both Africa 1 (a and b) sub-lineages. Phylogeographic Bayesian Markov chain Monte Carlo analysis of a 405 bp fragment of the RABV nucleoprotein gene from the 76 new sequences derived from Ghanaian animals suggest that within the Africa 2 lineage three clades co-circulate with their origins in other West African countries. Africa 1a is probably a western extension of a clade circulating in central Africa and the Africa 1b virus a probable recent introduction from eastern Africa. We also developed and tested a novel reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of RABV in African laboratories. This RT-LAMP was shown to detect both Africa 1 and 2 viruses, including its adaptation to a lateral flow device format for product visualization. These data suggest that RABV epidemiology is more complex than previously thought in West Africa and that there have been repeated introductions of RABV into Ghana. This analysis highlights the potential problems of individual developing nations implementing rabies control programmes in the absence of a regional programme

    Physical activity assessment by accelerometry in people with heart failure

    Get PDF
    Background: International guidelines for physical activity recommend at least 150 min per week of moderate-to-vigorous physical activity (MVPA) for adults, including those with cardiac disease. There is yet to be consensus on the most appropriate way to categorise raw accelerometer data into behaviourally relevant metrics such as intensity, especially in chronic disease populations. Therefore the aim of this study was to estimate acceleration values corresponding to inactivity and MVPA during daily living activities of patients with heart failure (HF), via calibration with oxygen consumption (VO2) and to compare these values to previously published, commonly applied PA intensity thresholds which are based on healthy adults. Methods: Twenty-two adults with HF (mean age 71 ± 14 years) undertook a range of daily living activities (including laying down, sitting, standing and walking) whilst measuring PA via wrist- and hip-worn accelerometers and VO2 via indirect calorimetry. Raw accelerometer output was used to compute PA in units of milligravity (mg). Energy expenditure across each of the activities was converted into measured METs (VO2/resting metabolic rate) and standard METs (VO2/3.5 ml/kg/min). PA energy costs were also compared with predicted METs in the compendium of physical activities. Location specific activity intensity thresholds were established via multilevel mixed effects linear regression and receiver operator characteristic curve analysis. A leave-one-out method was used to cross-validate the thresholds. Results: Accelerometer values corresponding with intensity thresholds for inactivity ( 50% lower than previously published intensity thresholds for both wrists and waist accelerometers (inactivity: 16.7 to 18.6 mg versus 45.8 mg; MVPA: 43.1 to 49.0 mg versus 93.2 to 100 mg). Measured METs were higher than both standard METs (34-35%) and predicted METs (45-105%) across all standing and walking activities. Conclusion: HF specific accelerometer intensity thresholds for inactivity and MVPA are lower than previously published thresholds based on healthy adults, due to lower resting metabolic rate and greater energy expenditure during daily living activities for HF patients. Trial registration: Clinical trials.gov NCT03659877, retrospectively registered on September 6th 2018.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This study was undertaken as part of a PhD, which was funded by a University of Exeter Postgraduate Studentship Grant. The funders were not involved in design of the study, data collection, analysis, and interpretation of data, and in writing the manuscript.published version, accepted versio
    corecore