34 research outputs found

    Efficient and Directive Generation of Two Distinct Endoderm Lineages from Human ESCs and iPSCs by Differentiation Stage-Specific SOX17 Transduction

    Get PDF
    The establishment of methods for directive differentiation from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is important for regenerative medicine. Although Sry-related HMG box 17 (SOX17) overexpression in ESCs leads to differentiation of either extraembryonic or definitive endoderm cells, respectively, the mechanism of these distinct results remains unknown. Therefore, we utilized a transient adenovirus vector-mediated overexpression system to mimic the SOX17 expression pattern of embryogenesis. The number of alpha-fetoprotein-positive extraembryonic endoderm (ExEn) cells was increased by transient SOX17 transduction in human ESC- and iPSC-derived primitive endoderm cells. In contrast, the number of hematopoietically expressed homeobox (HEX)-positive definitive endoderm (DE) cells, which correspond to the anterior DE in vivo, was increased by transient adenovirus vector-mediated SOX17 expression in human ESC- and iPSC-derived mesendoderm cells. Moreover, hepatocyte-like cells were efficiently generated by sequential transduction of SOX17 and HEX. Our findings show that a stage-specific transduction of SOX17 in the primitive endoderm or mesendoderm promotes directive ExEn or DE differentiation by SOX17 transduction, respectively

    Should public health interventions aimed at reducing childhood overweight and obesity be gender-focused?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overweight in childhood is a major public health concern that calls for immediate preventative action. An increasing number of reports suggest that gender specific approaches to prevention may be more effective. However, there is a paucity of information to guide gender-sensitive health promotion and population health interventions for the prevention of overweight in childhood. In the present study, we sought to determine gender-differentials in overweight and underlying behaviors, nutrition and physical activity, among pre-adolescents in Alberta, Canada, to inform the discussion on gender-focused interventions for chronic disease prevention.</p> <p>Methods</p> <p>In 2008, we surveyed 3421 grade five students and their parents of 148 randomly selected schools. Students completed the Harvard food frequency questionnaire, questions on physical activities, and had their height and weight measured. Parents completed questions on socio-economic background and child's lifestyle. We applied multilevel regression methods to assess gender differentials in overweight, nutrition and physical activity.</p> <p>Results</p> <p>Overall, the prevalence of overweight was slightly higher among boys (29.1%) than girls (27.9%) with more pronounced differences in towns and urban geographies. Boys reported to be much more physically active relative to girls (OR = 2.12, 95% CI: 1.73-2.60). Diets of boys, relative to those of girls, reportedly constituted more fat and were less likely to meet the recommendation of 6 daily servings of vegetables and fruits (OR = 0.81, 95% CI: 0.71-0.93).</p> <p>Conclusion</p> <p>Our findings confirm the existence of gender differences in physical activity and nutrition, and support gender-focused health promotion whereby priority is given to physical activity among girls and to healthy eating among boys.</p

    The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa

    Get PDF
    Background The digestive systems of animals can become highly specialized in response to their exploration and occupation of new ecological niches. Although studies on different animals have revealed commonalities in gut formation, the model systems Caenorhabditis elegans and Drosophila melanogaster, which belong to the invertebrate group Ecdysozoa, exhibit remarkable deviations in how their intestines develop. Their morphological and developmental idiosyncrasies have hindered reconstructions of ancestral gut characters for the Ecdysozoa, and limit comparisons with vertebrate models. In this respect, the phylogenetic position, and slow evolving morphological and molecular characters of marine priapulid worms advance them as a key group to decipher evolutionary events that occurred in the lineages leading to C. elegans and D. melanogaster. Results In the priapulid Priapulus caudatus, the gut consists of an ectodermal foregut and anus, and a mid region of at least partial endodermal origin. The inner gut develops into a 16-cell primordium devoid of visceral musculature, arranged in three mid tetrads and two posterior duplets. The mouth invaginates ventrally and shifts to a terminal anterior position as the ventral anterior ectoderm differentially proliferates. Contraction of the musculature occurs as the head region retracts into the trunk and resolves the definitive larval body plan. Despite obvious developmental differences with C. elegans and D. melanogaster, the expression in P. caudatus of the gut-related candidate genes NK2.1, foxQ2, FGF8/17/18, GATA456, HNF4, wnt1, and evx demonstrate three distinct evolutionarily conserved molecular profiles that correlate with morphologically identified sub-regions of the gut. Conclusions The comparative analysis of priapulid development suggests that a midgut formed by a single endodermal population of vegetal cells, a ventral mouth, and the blastoporal origin of the anus are ancestral features in the Ecdysozoa. Our molecular data on P. caudatus reveal a conserved ecdysozoan gut-patterning program and demonstrates that extreme morphological divergence has not been accompanied by major molecular innovations in transcriptional regulators during digestive system evolution in the Ecdysozoa. Our data help us understand the origins of the ecdysozoan body plan, including those of C. elegans and D. melanogaster, and this is critical for comparisons between these two prominent model systems and their vertebrate counterparts
    corecore