6 research outputs found

    Study of the influence of inner lining material on thermal stratification in a hot water storage tank

    No full text
    [EN] The present study has analysed the influence of thermal conductivity of the inner lining material on the stratification process in a hot water tank during thermal charge and the later standby period. This analysis has been carried out numerically by a three-dimensional Computational Fluid Dynamics (CFD) model. Experimental measurements of temperature profiles are used to select and verificate the model, and to later validate CFD simulations. With the validated model, temperature over time at several heights, temperature profiles, velocity contours, water streamtraces and temperature contours, are studied and compared for three different inner lining materials. The obtained results confirm that a weak conducting lining material favours energy storage in the tank and the thermal stratification of water during charge and subsequent standby period. The effect of the inner lining material on the energy accumulated in water and on the moment of energy (stratification) is potentially enhanced when the material's thermal conductivity diminishes. The use of insulating paints as inner lining for water storage tanks could be a possible solution to be studied and subsequently adopted in practice to improve the efficient use of energy in stored water. The analysis techniques employed prove most useful and enable the results to be compared and presented in a novel way.This research was supported by the Plan Nacional de I+D+i del Ministerio de Ciencia e Innovacion (ENE2009-13376). The authors would like to thank L.H. Sanchis for his valuable and constructive suggestions during the planning and development of this research.Gasque Albalate, M.; González Altozano, P.; Maurer, D.; Moncho Esteve, IJ.; Gutiérrez-Colomer, RP.; Palau-Salvador, G.; García-Mari, E. (2015). Study of the influence of inner lining material on thermal stratification in a hot water storage tank. Applied Thermal Engineering. 75:344-356. https://doi.org/10.1016/j.applthermaleng.2014.10.0403443567

    Numerical Simulation of the Hydrodynamics and Turbulent Mixing Process in a Drinking Water Storage Tank

    No full text
    Jet-mixing and residence time in a rectangular water storage tank with a constant water level are investigated using the tools of Computational Fluid Dynamics (CFD). A set of Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations using a realisable k-ε model for different inlet configurations has been used. Numerical simulations were validated by means of experimental measurements. A saline inflow was simulated and the computed salinity in the outflow was compared with the measured values, with the aim of improving the tank performance based only on simple modifications of the inlet position and inflow rate. The results show that the URANS technique is able to adequately capture the experimental dilution curve measured at the outlet of the tank. The residence time is mainly influenced by advective transport. Modifications of the horizontal angle and Reynolds number of the inflow jet produce changes in the mixing characteristics when different performance indexes are compared

    Computational fluid dynamics simulation of aerosol transport and deposition

    No full text
    corecore